
PHD DISSERTATION

ELISA NADIRE CAELI

DANISH SCHOOL OF EDUCATION

AARHUS
UNIVERSITYAU

Computational Thinking in Compulsory
Education: Wh , Wh , and How?
A Societal and Democratic Perspective

ndli
ng
ph.d.
afha

Computational Thinking in Compulsory

Education: Why, What, and How?

A Societal and Democratic Perspective

Elisa Nadire Caeli

PhD Dissertation

2021

1

Computational Thinking in Compulsory Education – Why, What, and How? A Societal and

Democratic Perspective

PhD dissertation submitted to the Graduate School at the Faculty of Arts, Aarhus University

© Elisa Nadire Caeli

Submission date: November 29, 2021

Principal supervisor: Jeppe Bundsgaard, PhD, Professor, Danish School of Education (DPU), Aarhus

University

Co-supervisor: Simon Skov Fougt, PhD., Associate Professor, Danish School of Education (DPU),

Aarhus University

Normal pages (of 2,400 characters and rounded, excluding bibliography, lists, appendices, etc.):

Overview article: 88 pages

Article A: 18 pages

Article B: 22 pages

Article C: 13 pages

Article D: 21 pages

Article E: 23 pages

Total: 185 pages

This dissertation is designed as “a collection of several academic texts that are related in content and/or methodology

and where the results obtained in course of the PhD programme are presented and possibly published, either by the

PhD student alone or by the student together with other authors. In addition, the dissertation must include a separate

presentation by the PhD student that takes the form of a large-scale overview article”, as per “Rules for the PhD

Programme at the Graduate School, Arts”, chapter 5.2:

https://phd.arts.au.dk/fileadmin/phd.arts.au.dk/AR/Generelle_retningslinjer_UK_1-11-2012.pdf

https://phd.arts.au.dk/fileadmin/phd.arts.au.dk/AR/Generelle_retningslinjer_UK_1-11-2012.pdf

2

Table of Contents

Acknowledgments .. 4

Summary ... 7

1 Introduction ... 10

1.1 Research Questions: Why, What, and How ... 12

1.2 Structure of Dissertation ... 12

2 Research Design.. 15

2.1 Intended Research Design... 15

2.2 Actual Research Design .. 17

2.3 Didactic Theoretical Position .. 18

2.4 How My Sub-Studies Contribute ... 27

3 State-of-the-Art ... 32

3.1 Literature Review ... 32

3.2 Sub-Conclusion of State-of-the-Art .. 39

4 Historical Perspectives .. 40

4.1 Societal and Democratic Perspectives by Peter Naur ... 41

4.2 Historical Approaches... 56

4.3 From Historical to Present Perspectives .. 59

4.4 Sub-Conclusion of Historical Perspectives ... 62

5 Present Perspectives ... 66

5.1 Societal and Democratic Perspectives Today ... 66

5.2 Conceptions in Schools ... 69

5.3 A Computational Design Experiment .. 77

5.4 Sub-Conclusion of Present Perspectives ... 81

6 Conclusion ... 84

6.1 Why is computational thinking essential to teach in compulsory education, and what

aspects of it are essential to teach? .. 84

3

6.2 How can computational thinking be implemented in the classroom? ... 86

6.3 Contribution, Limitations and Future Work ... 87

References... 89

Danish Summary ... 92

Appendix: Articles A-E .. 95

A. Caeli, E. N. & Yadav, A. (2019). Unplugged Approaches to Computational Thinking: a Historical

Perspective. TechTrends. AECT, Springer. https://doi.org/10.1007/s11528-019-00410-5

B. Caeli, E. N. & Bundsgaard, J. (2019a). Computational Thinking and Technology

Comprehension in K-9 schools: A Round Trip.

Translated from: Caeli, E. N. & Bundsgaard, J. (2019). Datalogisk tænkning og

teknologiforståelse i folkeskolen tur-retur. Læring og Medier (LOM), 11(19).

https://doi.org/10.7146/lom.v11i19.110919

C. Caeli, E. N. & Bundsgaard, J. (2020). Technology Criticism in Schools – a Democratic

Perspective on Technology Comprehension.

Translated from: Caeli, E. N. & Bundsgaard, J. (2020). Teknologikritik i skolen – et demokratisk

perspektiv på teknologiforståelse. In Haas, C. & Matthiesen, C. (Eds.): Fagdidaktik og demokrati.

Samfundslitteratur.

D. Caeli, E. N. & Bundsgaard, J. (2019b). Computational thinking in compulsory education: a

survey study on initiatives and conceptions. Educational Technology Research and

Development. AECT, Springer. https://doi.org/10.1007/s11423-019-09694-z

E. Article E: Caeli, E. N. & Dybdal, M. (2020). Technology Comprehension in Schools.

Computational Design for Solving Authentic Problems.

Translated from: Caeli, E. N. & Dybdal, M. (2020). Teknologiforståelse i skolens praksis.

Datalogisk design til autentisk problemløsning. Læring og Medier (LOM), 12(22).

https://doi.org/10.7146/lom.v12i22.115613

https://doi.org/10.1007/s11528-019-00410-5
https://doi.org/10.7146/lom.v11i19.110919
https://doi.org/10.1007/s11423-019-09694-z
https://doi.org/10.7146/lom.v12i22.115613

4

Acknowledgments

It has been a privilege to be able to examine the field of computational thinking and technology

comprehension in K-9 in-depth and during my PhD studies I have met a bunch of great people. My

studies have been three years of fun and exciting work because of them. Here, I want to

acknowledge and thank the ones who have inspired and supported me the most.

First and foremost, I could not have wished for a better principal supervisor than Jeppe Bundsgaard

who has strengthened my confidence and courage as to the directions I have wanted to go with my

research. He has received a jillion emails from me with both good and less good (also very bad)

ideas, and I have always known that I could trust an honest answer: That he would encourage me

to “go crazy” on good ideas but also made me reflect on less good ideas. A big thank you!

Also, I want to thank my co-supervisor Simon Skov Fougt, who has been great at asking me questions

that I thought had obvious answers. Thank you for making me explain and reflect more on why this

and that was relevant and related.

When I was applying for my PhD position, I came across Aman Yadav, a productive professor in East

Lansing, Michigan State University whose work on computational thinking in education I admired

(and still do). When I suggested that I come to Michigan State University for six weeks before even

knowing if I would get the PhD position, he immediately welcomed me. As if he was not busy enough

with his own students, he has taken the (non-paid) time to discuss, offer advice on, and write articles

with me as well. Also, he patiently waited for me at the airport for a couple of hours when I was

detained and questioned about my travel plans by immigration officers and almost not allowed into

the country, one of their reasons being: "No one goes to East Lansing for six weeks". Luckily I did!

Thank you for your time and support, and I look forward to collaborating more in the future.

No one who reads this dissertation will doubt that it is based on and inspired by historical

perspectives. It was a paper by another professor, Peter J. Denning, that caused me to survey history

within the field of computational thinking. Peter J. Denning has also helped me understand

computing as a discipline as well as his perspectives on what he has labelled the new computational

thinking movement, compared to the historical one. Thank you for your time, effort, and patience in

explaining heavy subjects to a non-computer scientist who has asked a lot of questions.

In addition, Peter J. Denning put me in touch with a Finnish professor, Matti Tedre, with whom I have

had some collaboration on work on computational thinking, and who also took the time to discuss

some of the issues related to the subject. Thank you, and I hope to collaborate more in the future.

5

With regard to Danish history within the field, a bunch of people have inspired and talked to me. One

of my biggest heroes within the field is Peter Naur, who I unfortunately never got to meet. Fortunately,

though, I met his son, Thorkil Naur, who (in the same honest and straightforward manner as his father)

has discussed issues about computer science (datalogy), as well as provided me with books by his

father. Thank you.

In addition, Associate Professor Emeritus Erik Frøkjær was one of the persons who knew Peter Naur

very well. They were colleagues at the Computer Science Department at the University of

Copenhagen, and in several of his publications Naur thanked Erik Frøkjær for his feedback. I wrote

to Erik Frøkjær to find out more about Peter Naur’s thoughts and theories, and he welcomed me at

his office for discussions – and provided me with books as well. Thank you for encouraging me and

helping me understand the course of history – and for pointing out when I was writing nonsense. I

appreciate your feedback.

I also want to thank the Danish Data History Association (Dansk Datahistorisk Forening). Especially, I

want to thank the former chairperson, Finn Verner Nielsen, for inviting me to their time warp of a

basement filled with fascinating history: old machines and computer stuff, books etc. Thank you.

Driven by Finn Verner Nielsen, I also met two former pioneers within data education/computer

science in practice: the former teachers Gerd Belhage and Bjarne Belhage. Thank you for explaining

and illustrating how you implemented data education in your K-9 classes already in the 1970s. It has

been very inspiring.

When speaking about practice, I want to thank PhD in computer science Martin Dybdal, who among

other things has collaborated with me on a design experiment conducted in a Danish eight-grade

class. With your computer science specialist knowledge, I learned a lot from our planning,

conducting and evaluation of this experiment together, as well as from our other discussions on

computational thinking.

The abovementioned experiment, as well as other parts of my studies, have taken place in practice,

and I could of course not have done these studies with no practices to examine. Therefore, a big

thank you to the students, teachers and school principals who took part in surveys, observations,

experiments, pilot testing, etc. I know you are all very busy doing what it is all about – learning and

teaching – and I appreciate your time very much.

Also a bunch of thank yous to my great colleagues at The Department of Educational Theory and

Curriculum Studies at The Danish School of Education, Aarhus University. I especially want to mention

6

Louise Rosendal Bang, Marie-Louise Molbæk and Lise Baun: My workdays have been much more

fun because of you.

Furthermore, I want to thank Mikala Hansbøl and Ole Sejer Iversen, who discussed my preliminary

project at my work-in-progress seminar. I deleted my whole overview article and started all over

after our discussions, and I am thankful that I did. When looking back at it, I do not know what I

thought I was doing; however, that version was a stepping stone towards this final and (would I say)

much better version.

And for the actual presence of any versions at all, I would like to thank my friend Leik, who

encouraged me to apply for a PhD position. I am not sure I would have thought about it myself. Thank

you for helping me realize that this was the right thing for me to do at a time when I was rethinking

my career.

Last, but most of all, I want to thank my lovely daughter Nanna, who came into my life in the middle

of my PhD studies. She luckily made sure that I had a life besides my studies by puncturing my writing

bubble to sing and laugh (sometimes cry as well) and dance and play with her. She also made sure

that I did not sleep too long in the morning. Vera, who is the sweetest bonus daughter that I could

have ever wished for. She is visibly also the best big sister Nanna could have ever wished for

(wherever Vera goes, Nanna crawls). And Peter, who made sure that I could focus on finishing my

studies by taking care of practically everything at home in busy periods.

For the sake of good order, I must mention that everything in this dissertation is at my own expense.

Although I have been inspired by the many competent people mentioned above, it is not certain

that they agree with the understanding of the subject-area and the theoretical position I present in

this dissertation.

Elisa Nadire Caeli

Copenhagen, Denmark, November 2021

7

Summary

Over the past decade, computational thinking has attracted increasing interest within K-12

education. The subject area is being implemented in curricula around the world, as our societies

have become increasingly digitalized, thus it seems to be regarded as a fundamental general

competence in students’ present and future lives. In continuation of this development, the purpose

with this research project was to dig into the reasons why, including if, computational thinking is a

central competence to develop in compulsory education (K-9), and what aspects of it that are

important.

Specifically, the project was primarily centered on answering the following research question: Why

is computational thinking essential to teach in compulsory education, and what aspects of it are

essential to teach? Additionally, I wanted to examine what teaching could look like in practice,

based on the answers from my primary research question. Therefore, my secondary research

question was: How can computational thinking be implemented in the classroom?

Methodologically, this is a didactic study based on German-Scandinavian critical-constructive

Bildung-centered theories. It stands on the understanding that compulsory education should aim for

students to develop general competencies that prepare them for life in a free and democratic

society with rights and responsibilities. Compulsory education should therefore not aim at developing

specific career competencies, in this case within computer science.

Although a number of schools worldwide are already teaching computational thinking, it was my

hypothesis that arguments as to why it is important to teach this subject area in compulsory

education are often either lacking or only superficially described in literature in the field. This

hypothesis was prompted by Professor Peter J. Denning, who in an essay (2017b), among other

things discussed today’s lack of consensus regarding what computational thinking is, and whether it

is indeed a general competence that everyone can benefit from acquiring. He pointed out that the

today’s new understanding of computational thinking is poorer and narrower than the historical

understanding of the field. Therefore, he believes that researchers in the field should build on the

foundation that has already been laid historically and thereby create progress – rather than begin

theorizing and discussing all over again without historical insight.

I have examined why, what, and how from three perspectives: literature (state-of-the-art), historical

perspectives and present perspectives.

A systematic review and analysis of literature in the field confirmed that arguments concerning why

everyone should be taught computational thinking in compulsory education were either lacking or

8

superficially described. In addition, I found that today computational thinking is internationally

regarded as predominantly mathematical problem-solving strategies or concepts, such as

abstraction, decomposition of problems, and automation.

In my historical analyses, I focused mainly on Danish history within the field, as Danish compulsory

education (The Danish Folkeskole), in accordance with my theoretical position, has a tradition of

being oriented towards Bildung rather than towards college and career. I found that around 50 years

ago, a subject that contained elements of what today is called computational thinking was

discussed. The subject was, however, much broader. Professor Peter Naur in particular argued that

everyone in a digitalized society should learn datalogy (a term he coined instead of computer

science) as an essential interdisciplinary tool in the same way that everyone learns to master other

essential tools, especially language (including reading and writing) and mathematics. Naur had a

societal and democratic perspective on education; thus, he did not want to introduce this new

subject in order for everyone to become computer scientists, but rather so everyone would learn to

understand data, their nature and use – including how computers are programmed. Naur believed

that failure to educate the general population would result in experts in the field gaining power and

determining the direction of society, which in turn would dismantle democracy.

In line with Naur's arguments, the subject data education (datalære) was formulated in the 1970s. A

committee set up by the Danish Ministry of Education described in a report what the subject should

contain, and from their work I saw that merely focusing on mathematical problem solving was

considered inadequate. The committee recommended a broader focus that included, for example,

the use of data processing and the societal aspects of this, as well as a focus on understanding what

a computer was and how it could be programmed.

Computers were, however, much simpler then than they are today. Today, user interfaces are

designed so intuitively that understanding how they actually work does not seem to be relevant. It

may also seem irrelevant to look at simple historical examples of how the subject data education

was taught around 50 years ago, because of the obvious excessive developments in the digital field

since then. In this dissertation, I discuss that this simplicity is precisely one of the strengths of history in

the way that these simple examples can help students understand how computers basically work,

and what they actually can (and cannot) do.

At the same time, I conclude that historical perspectives on why, what, and how are insufficient in a

present and future society, and that contemporary analysis should supplement such historical

perspectives. Thus, in a present perspective, I discuss that Naur's arguments, as well as the content

description of the subject data education, are fundamentally still valid – partly because of Naur's

9

anticipation concerning the use of computers in the future and the power of experts. But the fact that

society has changed drastically in the field of digitization since the 1970s calls for specific arguments

for teaching a similar subject (why) to change as well. Computers are not used in the same ways

today, and the opportunities and consequences of digitization today are different than they were

back then. Furthermore, it is not the same specific content (what) that should be taught today. Today,

for example, many computer programs are based on machine learning models with dynamic

algorithms. Historically, data models were much simpler. Finally, teaching (how) should not take

place in the same ways as historically. For example, digital equipment and programs are to a much

greater extent available today, and the changes with regard to why and what also change how. I

exemplify how with a specific teaching example, where I in collaboration with a computer scientist

planned and conducted a design experiment in an eighth-grade class where students were to

design a prototype of, and program, a product that could reduce energy consumption.

Overall, in this dissertation, I argue that historical theories and discussions can serve as a good

foundation for theories and reflections on the present didactic questions why, what, and how. I

conclude that it is not computational thinking in the narrow common mathematical understanding

that is needed in general education, but a broader coherent subject – in Denmark called technology

comprehension – which focuses on developing competencies within datalogy, design, and

technology criticism.

10

1 Introduction

This PhD dissertation communicates the result of a three-year-long research project on

computational thinking in compulsory education (grades K-9). In this project, I examined whether

computational thinking is essential to teach in compulsory education and why, as well as what

aspects of computational thinking all humans need to learn in compulsory education to be able to

live and work in a society with democratic rights and responsibilities. In addition, I conducted an

experiment to bring some of my theories to practice.

Over the last decade, there has been an increasing interest in teaching computational thinking to

primary and secondary students (grades K-12) (see for example Bocconi et al. 2016; EMU 2021; ISTE

2016; NGSS 2013). The need to teach aspects of computer science1 in primary and secondary

classrooms has, however, been discussed by researchers and educators worldwide since the 1960s.

One of these researchers, who still actively participates in discussions on this topic today, is professor

in computer science Peter J. Denning. In recent years, Denning has presented some trouble spots

with the new movement on teaching computational thinking in schools. He says:

Around 2006 the promoters of the CS-for-all K-12 education movement claimed all people

could benefit from thinking like computer scientists. Unfortunately, in attempts to appeal to

other fields besides CS [computer science], they offered vague and confusing definitions

of computational thinking. As a result today’s teachers and education researchers struggle

with three main questions: What is computational thinking? How can it be assessed? Is it

good for everyone? (Denning 2017b)

Denning finds it concerning that teachers are still unsettled about these basic issues: “How can they

be effective if not sure about what they are teaching and how to assess it?” he asks, and argues that

there is no need for vagueness regarding what computational thinking is. The meaning of it, which

has evolved since the 1950s, is clear, he states. The claims that it benefits everyone beyond

computational designers are, though, as yet unsubstantiated, he points out (Denning 2017b).

In the article, Denning explains how the present new notion of computational thinking and the

historical traditional notion of computational thinking differ. First and foremost, he argues that the

new version of computational thinking is independent of the past history: “One of the important

differences is that in Traditional CT2 programming ability produces CT, and in the New CT learning

1 In the 1960s, the term computational thinking was not used; instead, other terms related to computer science

such as datalogy and data education were used. I will elaborate later on these terms.

2 CT is short for computational thinking.

11

certain concepts produces programming ability. The direction of causality is reversed” (Denning

2017b). For example, in traditional computational thinking “algorithms are directed to control a

computational model (abstract machine) to perform a task,” whereas in new computational

thinking, “algorithms are expressions of recipes for carrying out tasks; no awareness of computational

models is needed” (Denning 2017b). The absence of any mention of computational models is a

mistake, he argues: “We engage with abstraction, decomposition, data representation, and so forth,

in order to get a model to accomplish certain work” (Denning 2017b). Moreover, in new

computational thinking, an algorithm is described as any sequence of steps and for all kinds of

information processors including humans. A step that requires human judgment is, however, not an

algorithmic step, he points out. Therefore, the new notion of an algorithm and the possible absence

of a machine could cause students to miss the most basic idea of an algorithm.

Another issue is how new computational thinking in the frameworks Denning has reviewed is

described as a set of mathematical problem-solving concepts, whereas in traditional computational

thinking it involves skills of design and software crafting. “Computational thinking includes designing

the model, not just the steps to control it.” It is “loosely defined as the habits of mind developed from

designing programs, software packages, and computations performed by machines,” he argues

(Denning 2017b).

Denning and one of his colleagues, Professor Matti Tedre, suggest that a lack of knowledge about

the long and rich history of computational thinking may lead to weaker and less ambitious versions

of the subject area than we have seen in the past, causing computational thinking to diminish and

not progress (Tedre & Denning 2016).

They argue:

When researchers do their homework well, they know what previous generations of

scientists have tried and done, and where they have succeeded and failed. They avoid

'reinventing the wheel' by acknowledging predecessors who built the foundations on

which the current generation of researchers is now working. (Tedre & Denning 2016)

Similarly, Denning, Tedre, and chief academic officer for the non-profit organization code.org Pat

Yongpradit point out that early work on computer science has shown us what works and what does

not. It is our history that has shaped today’s world. For example, equating computer science with

programming is problematic and illustrates how we repeat history if we forget it (Denning, Tedre, &

Yongpradit 2017).

In order to understand the development up until today and be able to benefit from early work and

past successes and failures, I decided to examine historical perspectives on and practices within

12

computational thinking in education. I wanted to examine whether history could help answer some

of today’s central questions when embedding computational thinking in compulsory education.

1.1 Research Questions: Why, What, and How

Specifically, I examined two of the abovementioned three trouble spots identified by Denning,

namely what computational thinking is and if it is good for everyone (why).

With this regard, my primary research question was:

Why is computational thinking essential to teach in compulsory education, and what

aspects of it are essential to teach?

Moreover, I wanted to examine what my primary studies could mean for practice. Therefore, my

secondary research question was:

How can computational thinking be implemented in the classroom?

In this dissertation, I look at compulsory education, understood as kindergarten to grade-nine (K-9). I

focus on what all human beings need to learn to be able to live and work in a democratic society;

that is, what they need to learn in a compulsory subject in compulsory education. Consequently, my

purpose is not to determine what computational thinking in computer science is, but specifically to

examine what computational thinking in a context of compulsory education is in order to suggest

answers to what knowledge and skills all humans need to develop.

1.2 Structure of Dissertation

This dissertation is designed as:

a collection of several academic texts that are related in content and/or methodology and

where the results obtained in course of the PhD programme are presented and possibly

published, either by the PhD student alone or by the student together with other authors. In

addition, the dissertation must include a separate presentation by the PhD student that

takes the form of a large-scale overview article.3

The overview article consists of six chapters (chapters 1-6), and the appendix contains five published

and peer-reviewed articles, referred to as sub-studies. In the present overview article, I discuss how

the sub-studies are related to and contribute to answering my overall research questions on why,

what, and how – three keywords that are repeated throughout the dissertation.

3 As per “Rules for the PhD Programme at the Graduate School, Arts”, chapter 5.2:

https://phd.arts.au.dk/fileadmin/phd.arts.au.dk/AR/Generelle_retningslinjer_UK_1-11-2012.pdf

https://phd.arts.au.dk/fileadmin/phd.arts.au.dk/AR/Generelle_retningslinjer_UK_1-11-2012.pdf

13

In the present chapter, Chapter 1, I introduce my research project and its overall purpose.

In Chapter 2, I describe my research design, including my intended research design since it led to

my actual research design. I discuss the didactic4 theoretical position on which my studies are based.

Moreover, I briefly describe each of my sub-studies (five published articles, and two studies that only

appear in this overview article).

I have examined the research questions from three perspectives: State-of-the-Art, Historical

Perspectives, and Present Perspectives. In the three following chapters, I present my results from each

of these three perspectives.

In Chapter 3, State-of-the-Art, I communicate the results from a review of international

computational thinking research literature. From this review, I analyze what computational thinking

is regarded as today, as well as the arguments for embedding it in K-12.

Chapter 4 is centered on historical perspectives. In this chapter, I present three sub-studies: The first

sub-study is centered on Peter Naur’s perspectives on datalogy (a term he used instead of computer

science). The next two sub-studies are included in this dissertation in the form of articles (A and B).

One article is about unplugged5 approaches to computational thinking inspired by historical

examples, and the other article is about the development from the 1960s and up until today with

regard to computer science in Danish education. In the latter, I additionally discuss shortcomings of

historical examples.

This leads me to present perspectives in Chapter 5. In this chapter, I discuss three sub-studies that are

all included as articles (C, D, and E). In the first sub-study, I present and discuss the findings from a

survey of Danish school principals’ conception of why and what. In the second sub-study, I analyze

how digital technologies influence our lives today. I mainly discuss why we need to teach technology

comprehension (as a broader concept than computational thinking) today, and what it is. The final

sub-study illustrates a possible how. I present a design experiment that I co-planned, co-conducted,

and co-assessed based on the whys and whats from previous chapters.

In Chapter 6, I conclude on and discuss the overall findings of my project in terms of why, what, and

how. I discuss the contribution as well as limitations of my work, and what future work is needed.

4 In this context, the term didactic is based on Nordic educational traditions, e.g., professional factors

concerning what students should learn, why, and how. I elaborate on the term in the next chapter and argue

for my didactic position.

5 Without a computer.

14

The five articles that together with my overview article constitute my dissertation are included in the

appendix (page 95 ff.), articles A-E.

15

2 Research Design

Methodologically, this project is a didactic study. It contains five sub-studies, and the primary purpose

was to examine why and what aspects of computational thinking are essential to teach in

compulsory education. The secondary purpose of this project was to examine how computational

thinking can be implemented in the classroom.

I chose to first and foremost focus on the why and the what before the how. This choice was in part

based on a hypothesis that arguments for why students need to learn the kind of computational

thinking that researchers, educators, and politicians find they do is often missing in literature, and in

part based on two preliminary studies that I did in collaboration with Professor Jeppe Bundsgaard

from January to June 2018. The purpose of these studies was to identify characteristics of effective

computational thinking teaching. Originally, these were the two main studies in my project, but the

results of these studies made me change my research design. This is why I find them worth

mentioning here. Therefore, in the following I present my intended research design and method. I

discuss why it did not work out the way I was expecting, and how the results of it led me to my actual

research design and method.

2.1 Intended Research Design

Table 1 illustrates the two studies (Phases 1 and 2) and the progression of my intended research

design; that is, what I planned to do when I started my studies. At that time, the purpose of my studies

was to identify characteristics of effective computational thinking teaching through a three-phased

design:

Phase 1. Preliminary survey

study

Phase 2. Observation study Phase 3. Secondary analysis

of ICILS 2018 scores

Digital questionnaire to 145

principals of schools

participating in the ICILS6

2018 assessment

Six weeks of structured

observation in six different

eighth-grade classes with

ICILS 2018 participation

Comparison of observation

study results to secondary

analysis of ICILS data

Table 1. Intended Research Design

6 International Computer and Information Literacy Study that every fifth year measures eight-grade students’

computer and information literacy as well as their computational thinking skills

16

2.1.1 A Preliminary Survey Study

Phase 1 of my intended research design was a survey study conducted in January and February

2018. We sent out a digital questionnaire to 145 Danish school principals. A total of 83 principals

completed the questionnaire. The purpose of the study was to identify to what extent Danish schools

in compulsory education offer IT7 initiatives that involve computational thinking, as well as educate

teachers to teach computational thinking, and to what extent Danish school principals are familiar

with computational thinking, as well as what their perspectives on embedding it in compulsory

education are. We wanted to analyze and report the results as a stand-alone study, the results of

which were interesting in themselves, but primarily, we wanted to use the results to select six schools

for Phase 2: an observation study.

2.1.2 An Observation Study and Secondary Analysis of ICILS Scores

The original intention of the preliminary survey study was to select three schools that had a self-

reported focus on and knowledge about computational thinking and three schools who reported

low focus on computational thinking and limited knowledge about it. I wanted to do structured

observations of and video record all teaching in all subjects in one eighth-grade class at each of the

six schools, every day for a week. The observations would allow me to categorize and subsequently

quantify my qualitative observations of what happened every minute in all of the observed lessons

with regard to teaching methods, student activities, content activities, learning resources, use of

technologies, concentration level, etc.

The reason for only observing schools that had participated in ICILS 2018 was to identify differences

between schools regarding to their scores. In other words, I wanted to analyze the results of ICILS

2018 that measured eighth-grade students’ computational thinking skills and thereby be able to

identify characteristics of the teaching in schools with high and low student scores, respectively.

The observation study was conducted from April to June 2018. I ended up observing only five of the

six classes since I gradually realized that there was no focused computational thinking teaching in

the teaching I was observing. That also meant that the “high focus/low-focus” classes were not

different enough with regard to computational thinking to be able to differentiate between them as

being focused or not. I did, though, finish the observations in the first five classes, which gave me 149

observed lessons, categorized into 706 different sequences of what happened every minute in

detail, including notes and video recordings.

7 Information Technology

17

Since I did not see any focused computational thinking teaching in practice, it was not possible to

move on to Phase 3 or to analyze and present any theories on how to teach computational thinking

efficiently based on these observations. I only saw a few sequences containing aspects of

computational thinking, such as data collection in math. The observation study is, therefore, not

included in this dissertation because it resulted in non-findings towards answering my research

questions. I do, however, briefly describe it here, since it explains my need to ‘step back’ and answer

why and what before examining how any further. Moreover, the non-findings from these

observations caused me to subsequently co-plan and co-conduct a design experiment8 to identify

didactic opportunities and challenges based on my studies on why and what. I will explain in the

following what my actual research design and method came to look like.

2.2 Actual Research Design

As I stated in the introductory part of this chapter, this research project is methodologically a didactic

study that is based on the study of three fundamental didactic questions: why, what, and,

subsequently, how, illustrated in Figure 1.

Figure 1. Why, what, and how to teach computational thinking

The figure illustrates a dialectic relationship between why, what, and how. It shows that, in my

understanding, there is a linear process from why to what to how (big arrows): Why dominates what

to teach, and what to teach dominates how to teach it.

There are, however, also interactions in the opposite direction. What affects why since there is no

why to discuss without a what (small arrow). And how affects what to teach in terms of what is

actually possible (small arrow)9.

8 Included as Article E in this dissertation.

9 The dialectic arrow is adapted to this model from Bang, Døør, Steffensen & Nash (2007). They describe how

two parts are both individualities (stable parts in a whole), interdependent and interconnected (one does not

exist without the other), unequal (one dominates the other), interactional (one dominates but does not

determine the other), and historical phenomena (their results are impermanent = subjects of change)

18

Moreover, the faded arrows show an interaction between why and how. Why affects how (big faded

arrow), and how affects why, since it is hardly possible to think of why without thinking pre-existing

thoughts on how (small arrow). For example, in one study that I co-authored (Article C), we discuss

how in terms of whether technology comprehension should be embedded in the school curriculum

as its own subject and/or integrated in existing subjects; hence, our why was indirectly affected by

how (in this case organizing the school day with subjects on a timetable). And why directly affects

how when we conclude it should be embedded as both its own subject and integrated in other

subjects.

In its essence, it is illogical to teach computational thinking in the classroom without any clear idea

about why one teaches what. How does not exist without what and why, and what does not exist

without why. Therefore, the purpose of this present project was primarily to examine the dialectic

relation between why and what and, secondary, exemplify with how ,which means that I follow the

dominating process in the model (big arrows), while keeping in mind that they all counter-interact

as well, and that each of them is, therefore, subject to change.

While, empirically, my actual research design originated from the studies from my intended

research design, theoretically it is based on German-Scandinavian didactic theories. I will

discuss my theoretical position in the following section.

2.3 Didactic Theoretical Position

In this section, I will argue why I have chosen to examine the didactic questions why, what, and how,

how these questions are linked together, and what I, thereby, chose not to examine. To clarify what

the term didactics means in a German-Scandinavian context, I begin with a description of German-

Scandinavian notions of this term, and discuss how it differs from Anglo-Saxon notions of the same

term.

2.3.1 German-Scandinavian Notions of Didactics

When looking the term didactics up in the dictionary, it is clear that in German-Scandinavian

countries notions of the term are very different from notions in Anglo-Saxon countries. With regard to

Anglo-Saxon countries, Collins Dictionary, as an example, provides the following definition:

“something that is didactic is intended to teach people something, especially a moral lesson”, and a

didactic person is someone who “tells people things rather than letting them find things out or

discussing things”. Similarly, in Cambridge Dictionary, didactic is explained as “intended to teach,

especially in a way that is too determined or eager, and often fixed and unwilling to change”.

19

In contrast to this, in German-Scandinavian countries, didactics is far from the specific way of

teaching that is understood in common Anglo-Saxon conceptions. It is an open and much broader

concept. Professor Bjørg B. Gundem and Professor Stefan Hopmann describe it as an independent

discipline (Gundem and Hopmann 2002). In their work, they compare two sets of attitudes: the

Anglo-Saxon tradition of curriculum studies and the Central/North European tradition of didactics.

One of the problems, they say, is how many concepts, terms and words of the German-Scandinavian

language area lack counterparts in English:

Indeed the term Didaktik10 itself with its comprehensive intertwining of action and

reflection, practice and theory is one such untranslatable concept. The most obvious

translation of Didaktik, didactics, is generally avoided in Anglo-Saxon educational contexts,

and refers to practical and methodological problems of mediation and does not aim at

being an independent discipline, let alone a scientific or research program. (Gundem and

Hopmann 2002)

Gundem and Hopmann (2002) discuss how different attitudes towards curriculum planning and

implementation are, therefore, important obstacles to address when it comes to cooperation across

national borders in curriculum research and development. They argue that the problems with

transferring senses of meaning of central concepts make comparative research, cooperation, and

mutual exchange of traditions and approaches important.

In this project, I aim to share Scandinavian-German traditions of and approaches to education in the

context of teaching computational thinking. Despite the different meanings, I have chosen to use the

translated word didactics to make the language more fluent and easier to use in different word

classes11 and inflectional forms. Therefore, it is important to emphasize that throughout this

dissertation, didactics refers to German-Scandinavian notions of the term.

Another key term, related to the German-Scandinavian notions of didactics that I will explain in the

following, is the German term Bildung, which also lacks a counterpart in English and is therefore

impossible to translate directly into English. Gundem and Hopmann point out that: “No term in English

conveys the meaning of this concept which refers to the process and product of personal

development guided by reason” (Gundem & Hopmann 2002).

10 The German-Scandinavian word for didactics.

11 Additionally to using didactics as a noun, I use didactician when referring to a person who professionally

does research in the field of didactic theories, engages in didactic discussions and/or conducts didactic actions

in the classroom, and didactic when using the term as an adjective.

20

In the absence of an associated English word, I decided to use the German word Bildung throughout

this dissertation. In the following, I will further explain what Bildung and didactics, as key terms in my

studies, involve.

2.3.2 Critical-Constructive Didactics and Bildung-Centered Theory

My position in the didactic field is based on the critical-constructive theory of didactics of Professor

Wolfgang Klafki and his Bildung-centered theory. Klafki (2016) perceives Bildung as the self-

determination, co-determination and solidarity competence of the individual: It encompasses

competencies to self-determine one’s personal living conditions and views of life of humane,

professional, and religious nature; it encompasses competencies to co-determine opportunities and

take responsibility to form our common societal and political conditions; and it encompasses

solidarity competencies in the sense of the individual’s efforts to help other individuals whose

opportunities for self-determination and co-determination are hindered or limited by societal

conditions, underprivilege, political constraints or oppression.

General Bildung is the kind of Bildung that all humans in a society should develop. It involves learning

about and being confronted with things that concern all humans collectively, for example common

tasks and problems, human experiences and suggested solutions developed throughout history, as

well as changes, risks, and opportunities in the future in order to liberate and activate new

generations so they can understand and form the historical present and the future in free self-

determination (Klafki 2016).

Critical-constructive didactics is a Bildung-theoretical didactics; that is, it is based on theories of

Bildung. To Klafki, Bildung as fundament is necessary and possible for systematical and historical

reasons.

From a systematical perspective, Klafki argues that a central, informative category such as the

concept of Bildung is required so that the practical-pedagogical efforts – and the studies and

reflections that clarify and theoretically substantiate these efforts – do not fall apart in an incoherent

chaos of co-existing individual activities. The concepts of self-determination, co-determination, and

solidarity competence act as central, general informative criterions and assessment criterions for the

many pedagogic and didactic individual activities and plans.

From a historical perspective, Klafki says that the concept of Bildung was developed around 1770 to

1830 as a central critical-progressive and societal-critical concept in pedagogical thinking. Klafki

refers to Kant and his thoughts on every individual’s right to and possibilities for developing self-

determination – to become empowered – and Pestalozzi’s and Humboldt’s thoughts on every

individual’s right to development in all ways possible.

21

Klafki states:

the conception that humans through reasonable conversation and discussion and

reflective processing of experiences can arrive at a continued humanization of common

living conditions and an increasingly reasonable design of the social policy conditions, i.e.

that humans can break down an unsubstantiated domination of power and increase the

space for their freedom. (Klafki 2016, my translation)

In his view, didactics is not only a theoretical discipline but a science of practice for practice.

Therefore, he argues that the didactic tasks are, with help from scientific methods, to work towards

the views that cause didactic decisions, developments, discussions, and arrangements, as well as

their often hidden ideas about the future and philosophical implications. Subsequently, didactics

must make it possible to test and discuss these views and thereby help didacticians and decision-

makers such as curriculum planners and teachers, as well as students, to become aware of what

they are actually doing and deciding, and under what historical circumstances they are acting. They

must be aware of the underlying reasons for their decisions, considerations, and actions, he says.

Professor Frede V. Nielsen has elaborated on how didactics serves as a science of practice for

practice with what he calls the theory/practice problem.

2.3.3 The Theory/Practice Problem

When planning a lesson, it is insufficient to theorize, Nielsen states. He says that to realize one’s

theories, it is necessary to plan and make decisions about content and other aspects of teaching. In

that sense, didactics usually refers to both theory and practice planning.

Nielsen distinguishes between (a) didactics as theory that is scientifically oriented, and (b) didactics

as planning and decisions that can be scientifically based on scientifically oriented didactics. He

argues that his differentiation does not mean that the two kinds of didactics are not interconnected.

He explains that (a) directly or indirectly acts as a servant for (b). In that sense, theoretical didactics

is directed towards pedagogical practice. As is the case with Nielsen (1998), I primarily operate in

the field of (a) in this present research project, but with the intention of making a more conscious and

reflective basis for the field of (b) possible.

Nielsen states that didactic theories give opportunity to examine, understand and reflect on real

situations. Though theories simplify reality, they make reality more apparent and easier to

understand. Moreover, he argues that the critical distance associated with theoretical activity is a

good basis for changing one’s own pedagogical decisions and actions in well-considered,

constructive, and progressive ways. However, since theories are less detailed than practice, no

didactic theory and no theoretical awareness can encompass all aspects of a practice. The very

22

purpose of theories is to examine and simplify, he says. In that way, theories can enrich practice, but

practice can also enrich theories through the experiences one makes in a practice. It is hardly

possible to decide what is essential in pedagogical situations without engaging in practice. Thus,

Nielsen points out that scientifically oriented didactics can also include empirical studies of teaching

realities. For example, if empirical studies and analysis relate to and examine specific theories.

My secondary studies of how, communicated in Article E, build on Nielsen’s thoughts on this

interconnection between didactic theories and practice. As is explained briefly earlier and in details

later in this dissertation, my empirical study took the form of a course (a didactic practice) based on

my studies of why and what (didactic theories). Moreover, the empirical study (the course) could

possibly enrich these theories through the experiences made in practice.

2.3.4 Didactic Questions and Different Focuses

Nielsen (1998) distinguishes between narrow and broad understandings of didactics. In a narrow

understanding, didactics first and foremost addresses the questions what (contents), where to

(objectives), and why (arguments and purposes). In a broader understanding, it also addresses

questions regarding how (method, planning), with what (teaching resources), and where (institutions,

classrooms etc.). In both the narrow understanding and the broad understanding, who is also

addressed, but in different ways. In the narrow understanding, addressing who means that reflections

about content etc. must take into account student qualifications, whereas in the broader

understanding it means to involve students in reflecting and choosing content etc. Table 2 illustrates

didactic questions according to Nielsen.

Narrow understanding Broad understanding

What (content) What (content)

Where to (goal) Where to (goal)

Why (argument and purpose) Why (argument and purpose)

Who (students) Who (students)

 How (method, planning)

 With what (teaching resource)

 Where (institution, design of room, and more)

 Wh …

Table 2. Didactic questions according to Nielsen

23

Nielsen (1998) points out that didactic questions in a historical perspective have been more focused

on methods (how), but when the knowledge society replaced the industrial society during the late

20th century, didactics started to focus on content (what) and arguments on content (why).

With an increase of the amount of knowledge and new academic areas of knowledge (such as

computational thinking), it was no longer given what should be taught in school and why, Nielsen

states. Therefore, he argues, subject-specific reflections on teaching as ways to accomplish the

general purpose of compulsory education are much more important than earlier. Subject-specific

didactics depends on general didactics, which is also an argument for why selecting content (what)

is closely related to arguments (why). I will elaborate on this in the following section on subject-

specific didactics in a Bildung perspective.

2.3.5 Subject-Specific Didactics in a Bildung Perspective

With reference to Professor Karsten Schnack, Nielsen describes how subjects and their didactics can

be based on deciding current problems in society. Schnack refers to this didactic paradigm as

didactics of challenges. He says:

In didactics of challenges, questions are asked about what understanding and concepts

that are important for us and the next generation in order to handle the challenges that we

face as a society and as humans. If one considers that some of the crises mentioned before

are threatening to humanity in a whole new way, it must mean that the next generation

needs opportunities to comprehend the world in a way that enables them to handle some

of these crises. To a large extent, the content of Bildung must be decided on the basis of

what competences that are necessary to develop to act in a world where democracy is

threatened from all sides. (Schnack 1993 as cited in Nielsen 1998, my translation)

This position is described as being societal-/ideological-critical with an aim to change (improve) the

world, human awareness, and future possibilities by students developing responsibility and

competences to act on big problems in society. In addition, moral is important in this didactic position,

meaning that education and Bildung are committed to dealing with societal challenges.

My didactic approach and position in this project are critical-constructive as described by Klafki and

are based on the didactics of challenges. I examine possible whys, whats, and hows of

computational thinking in compulsory education in a societal, democratic perspective in order for

students to be able to handle societal challenges related to computing and data processing.

For example, in Article C, co-written with Bundsgaard, we, in line with these didactic theories, define

the concept of Bildung to encompass the individual, social, and cultural development of the whole

child. This is also reflected in the legislation relating to what Danish compulsory education should be

24

concerned with, for example students’ development into active citizens with social competences

and the ability to understand and take part in the democratic processes as well as their individual

overall development as human beings (Article D; see also Chapter 2.3.7 for the formal aims of Danish

compulsory education).

2.3.6 Levels of Didactic Discussions

In his PhD dissertation, Bundsgaard (2005) distinguishes between different levels of didactic

discussions. General didacticians and subject-specific didacticians, for example work at different

levels, he says. The general didactic researcher examines and discusses the overall purpose of

education, whereas the subject-specific researcher examines and discusses specific content based

on professional competencies within her or his subject – but with a general view and the overall

purpose in mind. Bundsgaard puts it this way:

Subject-specific and general didactics are not two fundamentally different areas of

research or practice; they are two perspectives on the same thing. Subject-specific

didactics is equivalent to general didactics but with a focus on a subject. Or more

accurately, with interest in how the worldview and perspective on the world, the methods

and areas of knowledge that one or more related subjects represent, can contribute to

students’ education. (Bundsgaard 2005, my translation)

In the cited work, Bundsgaard focuses on information technology (IT) didactics in relation to Danish

as an L1 subject (language one), and in that context he exemplifies that:

IT didactics in Danish as an L1 subject is, thus, general didactics with a focus on how Danish

can contribute to students becoming competent citizens and humans in the information

and network society of today and the near future, and on how IT can be used when

organizing teaching (Bundsgaard 2005, my translation)

Similarly, in this present project I examined the specific subject area computational thinking, focusing

on why this subject area is relevant to teach in compulsory education today to contribute to students

becoming competent citizens and humans in the digitalized society of today and the near future.

Therefore, the project contributes to subject-specific didactics on teaching computational thinking.

Bundsgaard further points out that Nielsen as well as Professor Carl Aage Larsen, limit subject-

specific didactics to the selection of content. However, in Bundsgaard’s view

A subject-specific didactician must work on a basis of an understanding of the situation’s

constituents (participants, relationships, resources, etc.) and in the light of that describe:

* the society and the world,

25

* the purpose of education,

* the teaching objectives,

* the teaching content,

* the methods and organizations of settings, collaboration and activities, and:

* the evaluation.

(Bundsgaard 2005, my translation)

To Bundsgaard, there is no hierarchical order in these tasks. This is in line with Klafki who says that:

“We are dealing with a structure of relations, where each individual decision and the holistic context

mutually address each other” (Klafki 2002, my translation).

I agree with this non-hierarchical view as I illustrated in my model of a dialectic relationship between

why, what, and how (Figure 1). For example, how also affects why and what in terms of what is

actually possible in practice. We cannot think about why and what without considering questions

regarding how, for example questions about how we as a society have chosen to run schools

(timetable, a teacher and xx students, a classroom etc.) Even when we plan to think freely and break

the framework, we do so with the existing framework in mind. There are, however, some questions

that I find more dominating than others, as illustrated in Figure 1.

2.3.7 My Didactic Choice of Why, What, and How

Bundsgaard (2005) discusses how Nielsen (1998) believes that one ideally needs to argue and

decide what is important to learn and therefore to teach before one can consider how to teach it. In

contrast, Bundsgaard, argues for dialectic relations between, for example, content and methods, that

is questions related to what I in this present project refer to as why, what, and how. He states that it

does not make sense to single out and deal with just one of these aspects as if it were autonomous:

On the other hand, it is completely acceptable to be more interested in one aspect than in

the others, but the didactician who is primarily interested in determining relevant content

must consider teaching practice and organization in order for the students to develop not

only information and skills, but also understanding, experience, insight, ability and will; i.e.

in order for them to develop competence. (Bundsgaard 2005, my translation)

Bundsgaard defines didactics as reflections about the teaching situation, reflections on planning

before the teaching situation, and evaluations after the teaching situation that form the basis of

further planning. In his conception, didactics is a reflection on three separate but interdependent

phases: The situation, Before the situation, and After the situation. He argues that planning involves

26

“2) what the students should learn, 3) how they should learn it, and especially 1) why they should

learn it”.

My original intention with the survey study and observation study, described in Chapter 2.1, was to

examine The situation; however, the results of these studies made me realize a need to examine

Before the situation to be able to move on to The situation. In my understanding, reflecting on Before

the situation involves reflecting on why and what prior to how.

At an abstract level, why and what are reflected in the formal aims of Danish compulsory education

(The Folkeskole, K-9) as declared by the Government:

The Folkeskole is, in cooperation with the parents, to provide students with the knowledge

and skills that will prepare them for further education and training and instil in them the

desire to learn more; familiarise them with Danish culture and history; give them an

understanding of other countries and cultures; contribute to their understanding of the

interrelationship between human beings and the environment; and promote the well-

rounded development of the individual student.

The Folkeskole is to endeavour to develop the working methods and create a framework

that provides opportunities for experience, in-depth study and allows for initiative so that

students develop awareness and imagination and a confidence in their own possibilities

and backgrounds such that they are able to commit themselves and are willing to take

action.

The Folkeskole is to prepare the students to be able to participate, demonstrate mutual

responsibility and understand their rights and duties in a free and democratic society. The

daily activities of the school must, therefore, be conducted in a spirit of intellectual freedom,

equality and democracy. (Ministry of Children and Education 2018)

As such, the purpose of Danish compulsory education is not only to prepare students for further

education or specific careers but also to promote a well-rounded development in a democracy. It is

central that students develop confidence in their own possibilities and willingness to take action.

And, perhaps most importantly in the context of developing computational thinking skills, that

compulsory education prepare them to be able to participate, demonstrate mutual responsibility,

and understand their rights and duties in a free and democratic society.

Consequently, examining why and what must involve examining societal perspectives on what all

individuals need to learn to be prepared not only for college and career but also for life in a free and

democratic society. Moreover, Bundsgaard points out that we are educating for the future, not the

past. Therefore, examining why includes examining what aspects of the society we live in and will

27

be living in in the near future that education should prepare students for. On the basis of the

characteristics of today’s society and of the society of the future, one can come up with suggestions

on what to learn, he argues.

With reference to Figure 1, in my view why, what, and how are interdependent. They all affect each

other. Keeping this in mind – for example that how already affects why and what in terms of our pre-

existing knowledge – I do, however, find it relevant to ask why and what before asking how. This is

primarily because how is not an interesting question to answer if an analysis of the purpose of

education, society, and the world shows that no reasons exist for teaching a specific subject.

Therefore, my approach in the present project was to examine why and what before exemplifying

with how.

When looking at Nielsen’s list of didactic questions, I place myself within a broad understanding of

didactics even though I have chosen to focus on some didactic questions and not others. For

example, I include didactic reflections on where to, who, with what, and where, which are necessary

when planning teaching. I have included these reflections in my research of how, which I explain

further in Chapter 5.3 and in detail in Article E. In addition, I touch on some of these other question

words in my overall reflections on where to (prepare for life in a democracy) for who (all individuals,

every student).

In the following section, I briefly describe the methods of my sub-studies and their contribution.

2.4 How My Sub-Studies Contribute

I have included five sub-studies in the form of published articles in this dissertation. The articles do

not necessarily have the same purpose in this dissertation as they do as journal articles, as they are

written as independent studies. Results from each of them do, however, contribute to this project.

Below, I explain the purpose of each of these studies in terms of why I conducted them as well as

how they contribute to answering my research questions. In addition, I have conducted two

additional sub-studies that have not been published as articles (chapters 3.1 and 4.1). In chapters 3,

0 and 5, I elaborate on the method, analysis and results of each of these seven sub-studies.

2.4.1 State-of-the-Art (Chapter 3)

Common Whats and Whys in Literature (Chapter 3.1)

This study is a state-of-the-art in regard to my primary research questions on why and what.

28

Denning’s discussion about trouble spots on computational thinking (2017b) made me

hypothesize that common understandings of computational thinking (what) would be rather

narrow, and that arguments for why we need to teach it would be weak (why).

In this study, I surveyed these questions. The purpose was to examine what other researchers have

said computational thinking is and their arguments for why it is important to learn.

Specifically, I based my analysis on the work of PhD student Tauno Palts and Professor Margus

Pedaste (2020). Based on a systematic literature review, they present an overview of the

dimensions of computational thinking defined in scientific papers. I build on their presentation of

definitions to analyze what and examine why – which is also the reason that what and why are

examined in reverse order in this chapter (what before why).

2.4.2 Historical Perspectives (Chapter 4)

Societal and Democratic Perspectives by Peter Naur (Chapter 4.1)

The didactic position in my studies builds on German-Scandinavian traditions within education

and Bildung, with a special focus on Denmark. Therefore, I wanted to examine Danish history

within the field of computational thinking in K-9 to see what has been discussed earlier, and if this

could provide answers to my research questions.

During my studies, I found out that especially one Danish researcher, Peter Naur, had already in

the 1960s discussed the importance of teaching datalogy in compulsory education. Because of

the main position Naur has as a theoretician in my field, I discussed his thoughts and theories in

several of my sub-studies. Therefore, I decided to address his theories in more detail in an initial

chapter compared with how I approached them in the following journal articles.

Specifically, the purpose of the present study was to present and discuss Naur’s perspectives on

datalogy for all with a special focus on why, in his view, everybody should learn to understand

computers and their use, and what they should learn. Furthermore, I illustrate his theories with

historical examples of how this could be taught.

Historical Approaches (Chapter 4.2)

Article A: Unplugged Approaches to Computational Thinking: a Historical Perspective. Co-author:

Professor Aman Yadav

29

My historical studies were first and foremost motivated by Denning’s considerations. As I discussed

in the introduction, Denning argues that there is no need for vagueness with regard to what

computational thinking is since the meaning of this concept has evolved since the 1950s and is,

according to him, clear (Denning 2017b).

The study resulted in a published article, which was written with Professor Aman Yadav at the

beginning of my studies when I first began examining the historical routes of computational

thinking. I have included the article here to illustrate how historical examples of teaching

unplugged (without a computer) can inspire and complement today’s focus on teaching plugged

(with a computer, often focused on programming).

From Historical to Present Perspectives (Chapter 4.3)

Article B: Computational Thinking and Technology Comprehension in K-9 Schools: A Round Trip.

Co-author: Professor Jeppe Bundsgaard

In collaboration with Bundsgaard, I further examined historical aspects of computer science

education, but this time with a specific focus on Danish discussions and activities. As was the case

with the previous article, this article was written at the beginning of my studies to gain an

understanding of developments in the field. At that time I had become aware that, in Denmark,

researchers and educators had discussed a subject called datalogy in the 1960s, the purpose of

which was similar to that being discussed today. I wanted to examine what had happened from

then and until today (50-60 years) to see whether history can provide us with lessons learned and

keep us from making similar mistakes and reinventing the wheel.

Society has, however, changed since the 1960s. I therefore also wanted to discuss the

shortcomings of the historical discussions. Thus the purpose of including this study in my dissertation

is to present the developments up until today and discuss that our historical perspectives are only

stepping stones. The world looks very different today than it did in the 1960s; for this reason we

need to add to history regarding why students need to learn what, and how.

2.4.3 Present Perspectives (Chapter 5)

Societal and Democratic Perspectives (Chapter 5.1)

Article C: Technology Criticism in Schools: a Democratic Perspective on Technology

Comprehension. Co-author: Professor Jeppe Bundsgaard

30

In this study, I analyzed present and future societal and democratic discussions and perspectives.

In collaboration with Bundsgaard, I discussed how digital technologies influence our society, our

common lives and our personal life, and how it will pose a threat to humanity if the next generation

does not develop competencies within computational thinking to be able to “to handle the

challenges that we face as a society and as humans” (Schnack 1993 as cited in Nielsen 1998, my

translation). Thereby, we based our study on a societal-/ideological-critical position that aims for

students to develop the responsibility and competences to act on big problems in society and in

that way improve the world in the future.

Originally, we wrote the article in Danish for a book on democracy and subject-specific didactics.

In this dissertation, it especially contributes to answering my research question with regard to why,

in continuation of Naur’s historical theories on why. In that sense, the main purpose of the study

was to analyze what consequences digital technologies have for society today, in order to discuss

why students need to develop what kind of computational thinking skills today.

Conceptions in Schools (Chapter 5.2)

Article D: Computational Thinking in Compulsory Education: A Survey Study on Initiatives and

Conceptions. Co-author: Professor Jeppe Bundsgaard

This study was published as an article that communicates the results of a survey study on initiatives

and conceptions of computational thinking in Danish compulsory education. The study was

designed as a digital questionnaire that was sent to 145 Danish school principals and was

completed by 83 of them. The survey was originally Phase 1 of my intended research design,

described in Chapter 2.1, and therefore, it was conducted at the beginning of my studies as well

(beginning of 2018).

The study was conducted, and the article was written, in collaboration with Bundsgaard. As I

described in my presentation of my intended research design, the survey was originally a

preliminary study to select three schools that thought they had a focus on and knowledge about

computational thinking and three schools that thought they had low focus on computational

thinking and limited knowledge about it. In this dissertation, however, I wanted to analyze their

answers regarding what computational thinking is according to the school principals, and why/if

we need to teach this subject area in compulsory education. The idea was to illustrate how the

principals’ answers reflect Danish traditions within compulsory education, for example by focusing

on Bildung rather than on educating students for the labor market.

31

As is the case with my literature review, I looked at what before why. The reason for this is that in

our survey, we first examined a specific what (computational thinking). Afterwards, we wanted to

examine the participating school principals’ conceptions of why.

A Computational Design Experiment (Chapter 5.3)

Article E: Technology Comprehension in Schools: Computational Design for Solving Authentic

Problems. Co-author: PhD Martin Dybdal

Finally, based on theories from my studies of why and what, I conducted a design experiment in

an eighth-grade class with PhD Martin Dybdal to examine how.

The purpose was to examine and combine a way of teaching computational thinking and design

thinking by developing a computational design to solve an authentic problem.

Originally, the study was planned and conducted because of my knowledge from my observation

studies in my intended research design where I did not see any focused computational thinking

teaching in practice. Therefore, I wanted to plan and conduct an experiment to experiment with

the theories in practice. With reference to my didactic position, I found theorizing insufficient.

In the following chapters 3, 0 and 5, I present and discuss the sub-studies in terms of method, analysis

and outcomes relevant to my dissertation, as well as a sub-conclusions of each chapter. In Chapter

6, I conclude on my overall findings.

32

3 State-of-the-Art

In this chapter, I present and discuss a review of literature on computational thinking in compulsory

education. My analysis is based on an existing literature review on common definitions (what) of

computational thinking. Based on the results of that study, I examined common arguments (why) for

embedding computational thinking in compulsory education; that is, arguments for why it is relevant

for all children – all individuals – to learn.

3.1 Literature Review

3.1.1 Method

This analysis was centered on two questions: 1) What are the common definitions of computational

thinking in compulsory education? and 2) What are the common arguments for embedding

computational thinking in compulsory education; that is, why is it relevant for all children to learn?

To begin with, I searched for a complete sample of articles on computational thinking in education

based on a number of criterions, for example that computational thinking was included in the title,

and that the article was relevant to K-9. As I was reading the abstracts of the returned articles,

however, I became aware that reviews on what already existed. Therefore, I changed my method.

Instead of making another review on common definitions, I based my review of why on an existing

new and comprehensive review from 2020.

In this review, PhD student Tauno Palts and Professor Margus Pedaste (2020) identified six

fundamental articles: Wing (2011), Barr and Stephenson (2011), CSTA and ISTE (2011), Brennan and

Resnick (2012), Selby and Woollard (2013), and Moreno-León (2015). In the following section, I

describe the method and outcomes of the study by Palts and Pedaste, and discuss the findings of

their review regarding what.

3.1.2 Analysis of What

The purpose of the systematic review study by Palts and Pedaste (2020) was to develop a model for

developing computational thinking skills. Their argument was that:

as many authors have published various ways of defining and approaching CT, this leads

us to the problem that not much attention has been dedicated to finding a common

understanding of the dimensions of CT skills that would help us focus on developing and

accessing CT skills. (Palts & Pedaste 2020)

As such, in their study, they aimed to find a common understanding, and to do that, they

systematically reviewed and presented an overview of the dimensions of computational thinking

33

defined in scientific articles. They based their work on two research questions: “1. Which dimensions

of CT skills can be identified in articles on developing CT? 2. How can these dimensions from different

articles be combined into a new theoretical model for developing CT?”

In my analysis, I focused on their findings regarding their first research question, which is the one

relevant to my studies. Based on their results, I continued my examination of why researchers think

that exactly these dimensions are important in order to develop computational thinking.

For their systematic review, Palts and Pedaste (2020) used the search engines EBSCO Discovery

Service and the ACM Digital Library. For EBSCO they set the criteria set: (1) search term

“computational thinking” in the abstract; (2) full text available; (3) peer reviewed, and (4) in English.

As the ACM Digital Library search engine has slightly different search options, the following search

criteria were set in the ACM Digital Library search engine: (1) search term “computational thinking”

in the abstract, and (2) full text available.

They describe:

The search was carried out on 1 January 2018 and returned 541 matches, including 228

in the ACM Digital Library and 313 in the EBSCO Discovery Service search results.

The next step was to filter out duplicate results (13), only 1–3 pages long texts (127) and

those not written in the context of computer science education (32). Then, articles that did

not include a clear list of CT skills (313) were excluded. Eventually, 9 articles were added

based on references in selected articles. In total, 65 articles were included in qualitative

analysis. (Palts & Pedaste 2020)

Their comparative analysis of the data from these 65 articles showed that the articles were often

based on each other. Palts and Pedaste (2020) categorized the articles “based on the theoretical

framework, definition and dimensions of CT used in each article”, and to characterize the

descendancy of the articles, they took into account the year of publication. This led them to six

clusters of computational thinking dimensions that they identified as originating from six different

articles:

 Wing (2006)

 Barr and Stephenson (2011)

34

 CSTA12 and ISTE13 (2011)

 Brennan and Resnick (2012)

 Selby and Woollard (2013)

 Moreno-León et al. (2015).

Figure 2 shows the relationship between the articles as identified from Palts and Pedaste’s systematic

literature search. The authors of the study explain:

[…] the arrows show how previously published articles have been used as the theoretical

rationale for the new articles; the blue font of the references with a surrounding square

indicates key articles that have been further used in the synthesis of the current study. (Palts

& Pedaste 2020)

12 Computer Science Teachers Association

13 International Society for Technology in Education

35

Figure 2. Relationship between articles, identified from systematic literature search by Palts and Pedaste (2020)

36

As seen in the figure, the articles all refer to Wing as the main driver of the present computational

thinking movement. Later articles build on her work as the theoretical rationale.

Below, I specify the definitions that Palts and Pedaste found in each of the six key articles in a

chronological order.

3.1.2.1 Wing (2006)

Characteristics of computational thinking: abstraction, problem decomposition, problem

reformulation, automation, and systematic testing.

3.1.2.2 Barr and Stephenson (2011)

Three concepts of data manipulation: data collection, analysis, and representation.

Six problem solving concepts: decomposition, abstraction, algorithms and procedures, automation,

parallelization, and simulation.

Greater focus on data manipulation and algorithms, and parallelization and simulation are added

as separate concepts of computational thinking.

3.1.2.3 CSTA and ISTE (2011)

Six concepts: formulating problems, organizing and analyzing data, abstractions, automation

through algorithmic thinking, evaluation for efficiency and correctness, and generalizing.

Main focus: solving problems using algorithms.

Evaluation for efficiency and correctness and are added as dimensions of computational thinking.

3.1.2.4 Brennan and Resnick (2012)

Four practices to assess computational thinking projects: abstracting and modularizing, reusing and

remixing, being incremental and iterative, and testing and debugging.

Focus is on project analysis.

New dimensions of iteration and reuse to be used in coding project analysis in several articles.

3.1.2.5 Selby and Woollard (2013)

Identified the terms mostly associated with computational thinking in literature  Computational

thinking includes: abstractions, decomposition, algorithmic thinking, generalization, and evaluation.

Data manipulation terms left out for being either too broad, not-well defined or not considered a skill.

Generalization and evaluation added from CSTA and ISTE.

37

3.1.2.6 Moreno-León et al. (2015)

Based on connecting computational thinking dimensions with automatic project analysis.

Computational thinking aspects: abstraction in creating functions and clones, parallelism in starting

several processes at the same time, logic in using logical operations, synchronization in sending

messages, flow control in creating reasonable loops, user interactivity in using interaction, and data

representation in using variables and lists in programs.

This approach has opened up algorithmic thinking as a demonstration of usage of parallelism,

synchronization, logical thinking, and flow control. Furthermore, data manipulation has been

emphasized by data representation and user interactivity.

To sum up on what, Palts and Pedaste (2020) conclude that most articles agree that computational

thinking involves solving algorithmic problems, and that core concepts are often described “starting

with defining the problem and ending with testing and evaluation”. Based on that knowledge, they

created a framework for problem solving as a cyclic process with three main problem-solving stages:

Defining the problem, Solving the problem, and Analyzing the solution. I will not go into further details

with their model since it does not contribute to answering my research questions.

In the following, I examine common arguments for embedding computational thinking in

compulsory education; that is, why it is relevant for all children to learn computational thinking. I base

my analysis on the six main articles found by Palts and Pedaste.

3.1.3 Analysis of Why

To analyze arguments for teaching computational thinking, I studied the same six main articles as

Palts and Pedaste. Below, I list my findings of each article regarding why.

3.1.3.1 Wing (2006)

In her essay, Wing states that every human must be able to think computationally to function in

today’s society. She argues that all of us use computational concepts "to approach and solve

problems, manage our daily lives, and communicate and interact with other people". As for that, she

gives examples such as packing a backpack or considering what line to stand in in the supermarket.

3.1.3.2 Barr and Stephenson (2011)

Professor Valerie Barr and Professor Chris Stephenson, who is the founding director of the CSTA, claim

that it is no longer sufficient to wait to introduce these concepts until students are in college. They

argue that: “All of today’s students will go on to live a life heavily influenced by computing, and many

will work in fields that involve or are influenced by computing. They must begin to work with

algorithmic problem solving and computational methods and tools in K-12”.

38

3.1.3.3 CSTA and ISTE (2011)

This article contains a list of an operational definition of computational thinking, and there are no

arguments for why it is important. However, the ISTE website introduces a definition: “Advances in

computing have expanded our capacity to solve problems at a scale never before imagined, using

strategies that have not been available to us before now. Students will need to learn and practice

new skills – computational thinking – to take full advantage of these revolutionary changes brought

about by rapid changes in technology” (ISTE 2014).

3.1.3.4 Brennan and Resnick (2012)

Associate Professor Karen Brennan and Professor Mitchel Resnick argue that when young people

engage in programming, for example through Scratch, which is a program they both contributed to

developing at Massachusetts Institute of Technology (MIT), this provides a valuable setting for

developing capacities for computational thinking. As for arguments regarding why to teach

computational thinking, they refer to the fact that computational thinking has received considerable

attention over the past several years. Therefore, their article does not present any arguments for why

all children need to learn computational thinking. Rather, it exemplifies how children can learn

computational thinking through programming, using Scratch as a programming environment.

3.1.3.5 Selby and Woollard (2013)

In their article, the two senior teaching fellows Cynthia C. Selby and John Woollard focus on

contributing to the development of a definition. They justify their inclusion or exclusion of terms based

on consistency of usage and consistency of interpretation across the literature and not on arguments.

Therefore, arguments for why computational thinking needs to be taught are missing. The authors

believe and conclude that: “There is a genuine need for a robust and agreed definition of

computational thinking. The definition can facilitate the development of computer science

curriculums in line with Wing’s original vision to encourage computational thinking for all”.

3.1.3.6 Moreno-León (2015)

Professor Jesús Moreno-León, Associate Professor Gregorio Robles, and Associate Professor Marcos

Román-González focus on assessment of computational thinking and present a web tool that

“allows analyzing Scratch projects to automatically assign a CT score as well as to detect potential

errors or bad programming habits, aiming to help learners to develop their coding and CT skills as

well as to support educators in the evaluation tasks”. They base their work on the fact that they, with

reference to Wing, in the last decade have witnessed a resurgence of programming and

39

computational thinking in schools. Thereby, they leave out any questions regarding why students

need to develop programming and computational thinking skills.

To sum up on why, two of the articles (Barr & Stephenson and CSTA & ISTE) do at some point discuss

why students should learn computational thinking skills, and four do not at all discuss why. However,

neither Barr & Stephenson nor CSTA & ISTE reflect on this didactical question in any deeper way.

Barr and Stephenson argue that computational skills are important as students' lives will be heavily

influenced by computing, and many will work in fields that involve or are influenced by computing.

CSTA and ISTE point out that students need to develop computational thinking in order to take

advantage of the revolutionary changes that computing has brought in terms of large-scale problem

solving. But neither article provides any evidence or analysis of why this is so.

3.2 Sub-Conclusion of State-of-the-Art

In this chapter, I examined common whys and whats of computational thinking today.

With regard to what, the analysis showed that definitions on computational thinking, as discussed in

the introduction with reference to Denning, emphasize skills within mathematical problem solving

and thereby underestimate or leave out design and software crafting.

With regard to why, the analysis showed that evidence in the examined articles is missing regarding

why there is a need to teach computational thinking in compulsory education.

As discussed in Chapter 2, why and what depend on each other. With reference to Klafki, it is

essential that didacticians, decision-makers and students are aware of the underlying reasons for

deciding, considering, and acting the way they do. Since many countries are embedding

computational thinking in the curriculum, and the arguments for doing so are weak, it is important to

further address issues relating to what aspects of computational thinking are essential to teach in

compulsory education, and why. I begin by looking at historical perspectives since I found out that

why and what have already been discussed by former researchers and educators and with broader

conceptions of the subject than the common conceptions in literature today described in the above.

40

4 Historical Perspectives

To find out what computational thinking is, Denning suggests to look in our history since

“computational thinking has a rich pedigree from the beginning of the computing field in the 1940s”.

Therefore, he says, there is no need for vagueness on what computational thinking is (Denning 2017).

Moreover, as stated in the introduction, he says that the claims that it benefits everyone are

unsubstantiated.

From my analysis of definitions and arguments in literature, I found similar results (Chapter 3). I

argued that today’s computational thinking movement is in general characterized by mathematical

problem-solving concepts, and that in-depth arguments and evidence of why we need to teach

computational thinking in compulsory education (and if we need to teach it at all) are missing. If

arguments exist, they are general and superficial.

Motivated by Denning’s suggestion, my analysis, and my didactic position that emphasizes the

importance of knowing why and what, I decided to examine the historical roots of computational

thinking, specifically with a focus on discussions and theories concerning compulsory education.

These historical analyses of what computational thinking is, and what we have already done,

discussed, and found out in the past, have significantly contributed to my overall research questions

concerning why computational thinking is essential to teach in compulsory education, and what

aspects of it are essential to teach.

In the following Chapter 4.1, I present and discuss the Danish professor Peter Naur’s perspectives on

datalogy for all people and especially why everybody in his view should learn to understand

computers and the use of them. In addition, I will present what Naur broadly discussed about what

students should learn. Naur's thoughts laid the foundation for a K-9 subject named data education

(datalære), and in order to describe in more detail the historical thoughts about what students should

learn, I present further works from that time that focus on especially what and how. That Naur’s

arguments are valuable in regard to answering my research questions in a contemporary context is

partly due to the fact that he made a number of – in many ways accurate – assumptions about how

datalogy could and probably would be used in the society of the future (our present) and would

affect all people. His arguments that everybody should learn to understand datalogy must be seen

in the light of these predictions – that datalogy is a relevant tool for all of us.

Next, in Chapter 4.2, I present the results of a study, predominantly based on Naur’s perspectives,

which illustrates what we can learn today from history with regard to how in the classroom. In this

study, I specifically discuss merging historical ideas with the present for students to gain a deeper

understanding of computers as tools for people, for example to solve key problems in our society.

41

Finally, in Chapter 4.3, I present results from a study on the development from the 1960s and up until

today. Concerning my research questions, I discuss what parts of historical computer science

education are not sufficient today; that is, what children in addition to historical perspectives need to

know in the world we live in today. This will lead me to Chapter 5 on present perspectives.

4.1 Societal and Democratic Perspectives by Peter Naur

In my view, one of the most significant researchers within the field in a Danish context was professor

of datalogy Peter Naur, who as early as in the 1960s argued that everyone should learn to

understand data, their nature and their use, and thus also learn to understand computer

programming. He introduced the term “datalogi” (datalogy) as the Danish translation of the term

computer science as a protest against computer science that he found was a misleading name since

it emphasizes computers instead of what the science is about, namely humans. “Datalogy has in it

the human aspect”, he explained (Naur 2005), and further: “Data is a matter of human

understanding”. In 1966, Naur argued that a datalogy subject for everyone was necessary in a

democratic society, even though not everyone was to become a computer scientist.

The purpose of this study was to examine how Naur's historical theories on why, what, and how with

regard to the historical K-9 subject of data education can contribute to the why, what, and how of

computational thinking education in compulsory education today. Throughout this chapter, I use

datalogy as a term instead of computer science because of Naur’s specific distinction between these

two terms.

4.1.1 Method

Naur’s societal and democratic perspectives on datalogy have been central in my research. In this

study, I present and discuss his thoughts and theories with regard to compulsory education as a

subject-specific didactic contribution to the field concerning my research questions: Why we need

to teach computational thinking today, what aspects of it we need to teach, and how.

The study is based on a narrative review of his work. I searched for literature by Peter Naur in library

databases and I followed references from the literature found; that is, I used a snowballing technique.

I have only included works that were relevant to answer my overall research questions as well as

relevant to compulsory education.

4.1.2 Analysis of Why and What

While society with regard to digitalization has gone through enormous changes over the last six

decades, Naur was already in the 1960s aware that all people should learn to understand digital

42

technologies. He explained the need to learn datalogy by comparing it with learning language and

mathematics, as he found significant similarities between the three subjects. He said:

When I say language learning, I mean the phenomenon in the broadest sense. I want to

include very basic things, reading, writing and spelling, and you can continue with

grammar, foreign languages, literature, stylistics, linguistics, and probably even more.

When I say mathematics, I also think of the whole spectrum of this subject from simple

arithmetic in primary school to applications of many kinds and up to advanced pure

mathematics.

Both language and mathematics are deeply influenced by the fact that they are the most

important aids, tools, for a large number of other activities. It is hardly too much to say that

language is the most important human aid of all. This circumstance demands the

placement of these subjects in the teaching; mathematics and language are both

incorporated in two completely different ways, namely partly as in-depth special

disciplines side by side with many other special disciplines, and partly as transversal

auxiliary subjects; that is, as subjects whose more elementary basic principles and aspects

are taught to students who later specialize in completely other disciplines. We all learn to

write, read, and calculate, whether we end up being artists, doctors, lawyers, or whatever.

It is my belief that in the long run it will be recognized that a subject exists

datalogy – the science of data, their nature and use –

which must be included in our education in a way that is very similar to learning language

and mathematics.

(…)

From this point of view, I predict that datalogy will be placed as a subject in education, and

that its basic concepts will become common possession and not just a matter for specialists.

In parallel, in-depth studies for the education of specialists will develop, quite analogous to

what is the case in language and mathematics. (Naur 1966b, my translation)

Naur defined datalogy as the science of data, their nature and their use. He believed that the

elementary parts of datalogy should be included in compulsory school teaching. A good basis would

be the concepts of data representation and formal data processes as well as exercises in or

demonstrations of realizing data processes with concrete equipment, he said (1966a). He explained

how data, data representations and data processes contain a completely new view on many human

forms of expression. “Through their intimate connection with these universal human things, the

societal consequences of computers become far more understandable” (Naur 1967, my translation).

43

Naur said that we introduce data as an aid, a tool, to do things in this world. He explained a data

process by saying that you have a reality that you, with a specific purpose in mind, are interested in

changing. But instead of changing it directly, it is often better to make a transition to data and make

a data process, for example to see the possible consequence of a change before changing it in

reality. To illustrate how computers affect society, Naur explained that data models allow one to

experiment with reality without having to experiment in reality. For example, an engineer can

perform calculations over a bridge they are building before building the bridge, instead of

experimenting with how it behaves in different situations.

Overall, he described what at the time were contemporary, applications of datalogy as information

search, for example by means of keywords: language translation of, for example, scientific or

technical literature; language analysis, where a computer, for example, can systematically search

for ambiguities of sentences; nuclear reactors, with the use of data models to study the

consequences of certain constructions before making them; road construction, where a computer

can, for example, include a number of different considerations such as reducing the amount of soil

to be moved during road construction or experiments with the visibility of road users; money and

stock administration, where a computer program can, for example, keep accounts of ordering

production parts; production planning, for example in relation to the order in which production parts

are to be produced to avoid waiting times for the machines; as well as direct datamatic control of,

for example, chemical productions. Overall, he emphasized, “that we are already long past the stage

when calculations were the most important work for them [the computers]” (Naur 1967, my

translation).

With the argument that notions of the future are important for present dispositions, he presented his

thoughts on the societal important possibilities of computers, as well. Specifically, he anticipated

developments in communications, including an expansion of the telephone service as well as

terminals with a television screen. He envisaged a system for keeping track of people's financial

circumstances, such as calculating taxes and advising on favorable loan options. For such tasks, it

was crucial that services were linked to a common public network – a central computer system – he

said. Completely private computers would not have similar benefits, as many beneficial calculations

would depend on external conditions, such as prices and legislation, which had to be kept up to date

centrally. With such a central system, payments could also “be made without the transfer of money

or paper, simply through an internal data process in the system, which causes the payer's account to

shrink and the payee's to increase with the amount” (Naur 1967).

Another future use of datalogy could be private counseling, he said. For example, "contact about

positions and about private purchase and sale of property which now takes place through ads in the

44

daily press could be taken over by a central computer system". With such a system, one could also

provide more detailed information and one could make specific demands so that both parties only

saw relevant options. At the same time, the system could keep track of whether certain positions

were posted or a particular movie would hit a particular cinema.

These were some of Naur's thoughts on future good use of data – to help people. However, he also

thought about future problems. For example, the possibility of datamatic14 surveillance of the society

with the aim to analyze and discover complicated connections in the society much more thoroughly.

In a way, such surveillance of, for example, the health status of the population could help trace

sources of disease. The danger of datamatic surveillance of citizens was, however, that the

information could be misused, that is, that data about us could be used for undesirable purposes. He

said:

Using computers, however, will make it possible to keep track of more information about

more citizens, and it will be easier to search for specific information. Therein lies a

temptation for the administration to accumulate information, in that case that they would

later be useful. (Naur 1967, my translation)

Based on his thoughts about the use of data and the consequent awareness that it would require an

understanding of datalogy to influence decision-making processes in the computerized system of

the future, Naur stated that: “There is no way around it, we all need to understand computers” (Naur

1968, my translation). He said:

This fact is the reason why many of us who are close to computers, and who think about

their societal consequences, feel that we at every favorable opportunity must emphasize

that the understanding of computer programming must be brought into general education

and thus become common possession. (Naur 1968, my translation)

By that he meant that those who understand how computers work will have the power of the system,

and therefore, in a democratic society we should not give up and leave the understanding (and

power) to programmers.

All of us have learned significant amounts of language, arithmetic and mathematics in

school, regardless of the fact that only quite a few of us have become linguists or

mathematicians. Similarly, datalogy must be brought into school and prepare us all for life

14 Adjective form of datalogy.

45

in the age of computers, just as reading and writing are considered a necessary

precondition for life in a society characterized by print. (Naur 1967, my translation)

Naur did not think that his perspectives would be realized, though, when he looked at what he

described as the inertia that characterized the development of educational institutions (Naur 1966a;

1968). Despite this, he relentlessly shared his perspectives because he believed it was the right thing

to do – because it was of great societal importance when it came to central decisions (Naur 1966a).

As presented in Chapter 2.3, Klafki's general critical-constructive didactics that I position myself

within focuses on people being able to increase their freedom and "break down an unsubstantiated

domination of power". This is in line with Naur’s subject-specific arguments on why everybody should

learn to understand computerized systems in a society dominated by computerized systems. Those

who understand the system will have the power. It is also in line with Schnack who argues for the

need to determine content based on analysis of the competencies that are needed in a democracy.

Naur argued how the subject could be included in the compulsory education curriculum as an

independent subject or integrated in a subject such as mathematics, but he did not find organization

central. “The important thing is the content,” he stated (Naur 1967).

Naur discussed that a subject should focus on fundamental concepts regarding data and their use,

for example how content can be represented very differently, and how we with formalized

descriptions of a problem can become aware of opportunities we have not seen before. The subject

should mention computers, but he pointed out that it was not the most central part. He believed,

however, that the subject should deal with data representations that could be processed

automatically or computerized, and that working with automatic data processes would require

exercises with machines. Only after this foundation was taught, should a language for programming

be introduced. He emphasized that the purpose of compulsory education was to build such a

foundation for understanding and not to merely prepare the students to become, for example,

programmers (Naur 1966a; 1967; 1968).

Naur’s perspectives were central to the Danish subject that in the 1970s was called data education

(datalære). In 1972, the Danish Ministry of Education published a report on the subject (Ministry of

Education 1972), formulated by a committee set up by the Ministry. Their descriptions and

recommendations of the subject in compulsory education were, among other things, based on

Naur's descriptions of datalogy and his thoughts on education. The committee highlighted general,

interdisciplinary concepts, such as data, problem formulation, model, algorithmization and process

to be part of practical and application-oriented problem-solving processes. They warned against

orienting the teaching towards programming or coding, as problem-solving would then be too

46

specific rather than open and creative. Specifically, they formulated the following purpose for the

subject:

 To give insight into fundamental, interdisciplinary datalogical issues and concepts

 To communicate knowledge about possibilities and limitations of computers

 To inform about applied data processing and societal advantages and

disadvantages associated with extensive use of automatic data processing.

(Undervisningsministeriet 1972, my translation)

More detailed, the students should learn to be able to:

 recognize different types of data carriers, data representations, data structures, etc.

from everyday life.

 give an algorithmic description of various basic processes, such as simple sorting

problems, searching problems, and updating problems.

 assess the suitability of simple algorithms.

 program and run smaller tasks on a computer in a simple language.

 describe the main components of a computer.

 give an overview of fundamental phases in a data processing project.

 describe the main areas of applied data processing, and consider related societal

aspects.

(Undervisningsministeriet 1972, my translation)

The committee suggested the following topics as a starting point for later preparation of a detailed

content description:

1. The concept of data

 Data representations and notation forms

 Data structures and data processes

 Data Organization

2. Problem formulation and task structuring

47

3. The concept of models and model types

4. The concept of algorithms

 Algorithmization

 Algorithm descriptions

 Problem-oriented programming language

 Reading, writing and running programs

5. The basic structure of a computer

6. Data processing systems, data processing applications and societal aspects.

(Undervisningsministeriet 1972, my translation).

Their content description was based on the formal aims of Danish compulsory education, which they

were aware were to come into force three years later, in 1975. What was new in these aims

compared with earlier formal aims were, among other things, that compulsory education should

focus on preparing for life in a democracy, on equal opportunities for all, as well as on students’

personal development (AU 2018). These aims are visible when looking at how the committee

emphasized everyday life, areas of applied data processing as well as societal aspects. Also, they

emphasized awareness of computers as tools in order to counter the bureaucratization and

technocratization in society caused by the increasing use of computers. They directly pointed out

that data education would help fulfill the new aims of compulsory education (Ministry of Education

1972).

In line with Naur, the committee stated that compulsory education should not focus on teaching

students specific professional competences, and that programming was not the core of data

education. In addition, since programming languages were at that time hampered by strict formal

structures and technical details that could limit creativity, they suggested using flowcharts as an

alternative to describe the nature of algorithms. However, while flowcharts worked well for

communication between people, they found it problematic that students would not be confronted

with the consequences of their solutions through contact with a computer. Therefore, despite the risk

that the subject would be centered on machines and not people, they believed that using computers

was necessary – both as a motivating factor and as a valuable tool for testing solutions. This was an

issue that they suggested be analyzed further.

48

Seemingly, the subject was ahead of its time in both Denmark and other countries. In fact, it was

never fully implemented – even though the committee argued for the importance of data education

for all and recommended a curriculum, and even though many teachers and schools initiated

initiatives on their own. Few seemed to have realized at that time the importance of everyone

learning to understand and apply datalogy as a tool for human activities.

4.1.3 Analysis of How

As stated, Naur believed that a datalogy subject should be included in compulsory education in a

similar way as language and mathematics to learn about processing of data with automatic tools.

He argued that the impact of computers would affect our inner selves – that is, our way of thinking

and our way of dealing with problems. Therefore, his argument for a subject built on the fact that

datalogy is a tool for people. He called such tools datamates (datamater) – machines that process

data (Naur 1966b). Datalogy did not necessarily involve the use of computers, though. Naur’s focus

on people as central is illustrated in the way he described the relationship between people, problems

and tools in problem-solving processes. One of his basic theories was that human understanding

and problem formulation are closely related to the tools at their disposal at any given time, whether

digital or not, as depicted in Figure 3.

Figure 3. People, problems, and tools as fundamental elements in problem solving (Naur 1965)

The figure illustrates a symmetrical relationship between people, problems, and tools. One can view

problems from any of the three elements and discover a relationship with the two remaining ones.

Naur explains that:

We can view it from the position of either of the three elements and discover that the two

remaining have a subtle relationship: People can only understand the problems on the

background of an assumed set of tools, while a tool designed to solve a problem which is

understood by nobody is meaningless. Problems exist only in the minds of people and only

relative to understood tools. Tools only exist as such in so far as some people think of them

as the proper things with which to solve some problems. (Naur 1965, translated in

Sveinsdottir & Frøkjær 1988)

49

Illustrating his point with programming languages as tools, he continued:

For good or bad, the characteristics of the programming language will shape the thinking

of people and their conception of problems. The dangers of this are at once apparent

when we realize that programming languages are designed to be, as it is said, problem-

oriented. Now, in the view I put forward here there is no problem without an understanding

of the tool available for solving it. Being problem-oriented must therefore imply an

understanding of a tool also. What crops up here is of course the conventional view of the

problem, the view based on older tools. The great danger of problem-oriented languages

is therefore that they will tend to perpetuate a view of the problem which is appropriate to

an obsolete tool. (Naur 1965, translated in Sveinsdottir & Frøkjær 1988)

In line with Klafki, Naur was against the usual way of teaching a curriculum of highly structured

knowledge. He argued that “successful project work depends on the skilled application of certain

techniques”, and that the “difficulty lies not in the mastery of each of these, but rather in their interplay

and in their consistent, yet flexible, adaption to the actual project at hand” (Naur 1970).

4.1.3.1 Historical Experiments with How

Though the committee recommended implementing data education in compulsory education, they

also stated a number of challenges in implementing the subject because of a lack of resources. Too

few teachers was educated to teach the subject, and therefore, it was important to include data

education in teacher education as soon as possible for both pre-service and in-service teachers. In

addition, there were no teacher and student resources (textbooks) for the subject, and the committee

recommended to set up working groups that could prepare suitable resources. And finally, there was

a lack of computer equipment, that is, computers, as an aid to illustrate automatic processing of

algorithms and to demonstrate the iterative nature of problem-solving processes

(Undervisningsministeriet 1972).

One of these challenges was dealt with by computer scientist Erik Frøkjær in collaboration with

Carsten Fischer and Lisbeth Gedsø. In 1972, they published a student textbook called “Datalære i

skolen” (Datalogy Education in School) with assignments and activities and an accompanying

teacher’s book (Fischer, Frøkjær & Gedsø 1972a; 1972b). Frøkjær was at that time studying

mathematics and electrical technology at the Technical University of Denmark and was later, in

1985, employed at the Computer Science Department, University of Copenhagen, where he worked

together with Naur. The books were written on the basis of the committee's recommendation to

introduce the subject in compulsory education that basically was in line with Naur's theories. This is

why it is relevant in continuation of his theories.

50

The three authors concretized data education to include:

1) Basic concepts such as data, data representation, algorithms, and data processing.

2) Description of a computer, its structure, operations, possibilities and limitations, as well as

techniques used to solve tasks on computers.

3) Description of areas of application for data processing. The societal consequences of

widespread use of computer technology.

Below, I present and discuss some of the activities within each of the three topics to illustrate

examples of what teaching looked like in practice historically, and discuss whether historical hows

can benefit the hows of a subject today.

The purpose of the first topic regarding basic concepts is for students to understand that a lot of what

we do in our everyday life can be described as data processing, and that data processing takes

place as part of solutions to tasks or problems. As a first foundation, the concept of data can be

explained using examples of different forms of representation, such as mathematical expressions,

sentences, numbers, letters, and drawings. Conversely, it can also be exemplified that random

consequences of dots and dashes or ‘an apple’ are not data in themselves. Next, students can work

on tasks where, for example, they have to select an item (such as an apple) and find different data

about the apple as well as work on how data can be transformed or processed into something else

(for example, a sentence can be translated into English without losing its content, and numbers can

be described with matches instead of regular numbers).

Other types of tasks could be to consider situations with problem solving from everyday life as data

processing, for example having to cross a street with traffic lights, where data is represented by the

color of the traffic light that the brain processes based on the knowledge of the meaning of the colors

of a traffic light. When we are on one side of the traffic light (old reality) and want to cross to the

other side of the road (new reality) without being hit by a car, we use data to make a data process

in our heads before we start walking. In this way, students can learn that with data processing, one

can consider the consequences of an action without actually performing it.

Teachers can introduce the concept of algorithm with flowcharts. With flowcharts, students can work

on reading and describing different data processes themselves – for example, how to pump a bike

as shown in Figure 4 below. The authors explain: “Once you have developed an algorithm to deal

with a problem, you can save it and retrieve it every time you need it” (Fischer, Frøkjær & Gedsø

1972a, my translation).

51

Figure 4. Instructions on how to pump a bike, described by a flow chart (reconstructed and translated from

Fischer, Frøkjær & Gedsø 1972a)

Moreover, the authors suggest working with arranging data in data registers (for example, an

alphabetically arranged list of goods).

The purpose of the second topic regarding the description of a computer and techniques is that

students come to understand how computers can be used to solve problems by their programming.

Students can work on understanding a program as an algorithm that is described in a way so that a

computer understands it; that is, a series of very precise orders to be executed in a specific order.

The authors suggest to illustrate a computer's execution of orders by comparing it to an authentic

situation at a factory that produces a product – for example liver pate – controlled by a worker who

follows a program with the following orders: order lard, order liver, transfer lard, mix liver, save liver

pate, deliver liver pate. Here, the task is to produce liver pate, the input is liver and lard, and the output

is liver pate – if the worker only does what the program orders him to do.

Similarly, a program on a computer with the task to add two numbers could be: read a, read b, take

a, add b, save sum, write sum. Input data are the two numbers that in the program are called a and

b, while output is the sum of the two numbers. In order to get the computer – or worker – to execute

the same program over and over again, teachers can introduce the command “jump to n”, so that

the control unit jumps to a given order and follows the program from there. For example, if the

designer of a program asked the worker to jump to order 1 after the last order (“deliver liver pate”),

he would start all over again, which means he would automatically produce a new portion of liver

pate. This is a way to work with an understanding of programming, but without necessarily (or in the

first place) using a computer.

The third topic regarding areas of application and societal consequences is quite simple when

compared to the possibilities and use of computers today, nevertheless, it is still worth studying. The

authors present examples such as calculating salaries, ordering airline tickets, managing factory

productions, and monitoring hospital patients. They discuss that we can use a computer to perform

many different tasks, but emphasize that “we must know exactly how the tasks are to be solved” in

order to be able to program the computer to execute the orders (Fischer, Frøkjær & Gedsø 1972, my

52

translation). They differentiate between problem solving (the more creative part) and programming

or coding (the more technical part).

Discussions with students can focus on what a computer is good at and why. Teachers can compare

it to another tool – for example a hammer that is good at hammering, whereas the computer is good

at working quickly and accurately and can keep track of large amounts of data. As humans, we can

use the computer as a tool to do things faster than we can do as humans, and to solve tasks with

economic advantages.

Understanding the human-machine relationship is essential. The authors point out that in principle

humans can solve the tasks we solve with the help of computers. But only in principle: “In practice it

often turns out that the amounts of data are so large that only computers can manage to solve them”

(Fischer, Frøkjær & Gedsø 1972, my translation). They give an example of how launching space

rockets would be impossible without computers to control their course. A launch takes a few minutes,

and “during that time the computer makes so many calculations that it would take a scientist months

to do the same” (Fischer, Frøkjær & Gedsø 1972, my translation). In addition, a computer never

makes mistakes or gets tired like humans do, as long as it is programmed correctly.

The authors also point out the importance of discussing how the computer is not a substitute for

humans. It falls short in social situations with human contact. However, some of the examples

mentioned in their book have actually been replaced with computers today. For example, self-

service using computers in supermarkets and so-called ‘social robots’ that are aimed at replacing

parts of previous human contact. In a contemporary context, students can discuss what we as

humans have won and lost by letting computers take over some social situations as well.

The authors suggest that students can discuss what types of task computers are good at solving and

what they are not good at solving. They suggest working with punched cards, which in a

contemporary context should be supplemented with contemporary programming methods.

However, teachers could possibly use punched cards as a starting point for students to understand

some of the basic principles of early programming.

Examples and tasks from the book need a contemporary adaption, but many historical discussions

are still relevant today, which is why I have chosen to include them here. For example, the authors

mention tax calculation, banks, statistics, research, weather forecast, literature search, language

translation, teaching, process management, hospitals, the military, and the central personal register

(CPR). Students can discuss the types of data processing in the mentioned areas. With regard to

teaching, students can also consider and discuss advantages and disadvantages of automatic

53

control of what they have learned, as well as issues concerning computers replacing human contact

between teachers and students.

Misuse of data was also highlighted at the time. The authors illustrated the problem with examples

such as secret data (for example a baker's unique recipe that competitors should not see) and the

information collected about all of us in personal data registers when clear rules are lacking regarding

what information can be collected and to whom the information can be given. The authors point

out:

Once the data has been collected, there will always be a risk that the wrong persons will

gain access to it. (Fischer, Frøkjær & Gedsø 1972, my translation)

They aim for students to become aware of the risk that data storage in personal registers can affect

people unreasonably, and that by comparing a whole series of data about a particular person in a

data register, one can get a detailed picture of a person's behavior.

This was not possible in the past, since it was simply unmanageable to keep track of so

much data. With computers, it is manageable, and if it is done, there is a risk that

information that is currently described as private can be misused. (Fischer, Frøkjær & Gedsø

1972, my translation)

They suggest that students discuss ways to make reassuring rules for using data registers that contain

personal information. These issues are still very relevant today. Collection, storage, processing, resale

and leakage of personal data are often headlines in today’s news.

The historical how examples presented in this chapter illustrate a value in transferring didactic

reflections on why, what and how from data education to a present subject. I discuss this further in

the following chapters.

4.1.4 The Value of Naur’s Perspectives Today

As stated in the introduction, many countries are currently implementing subjects and initiatives

aimed at students developing computational thinking. This new development began with an essay

by Wing (2006) in which she reintroduced computational thinking as an important skill in line with

reading, writing, and arithmetic, similar to what Naur and other pioneers discussed in the 1960s.

In Denmark in 2018, the former Danish Minister of Education launched the experimental subject

technology comprehension. The purpose of this subject is in many ways similar to the purpose Naur

and the Johnsen Committee formulated for a subject, for example to be able to understand and

critically reflect on the possibilities and consequences of digital technologies in a society where

digital technologies play a major role (EMU 2019).

54

The formal objectives for the subject include four competence areas: Digital Empowerment, Digital

Design and Design Processes, Computational Thinking and Technological Knowledge and Skills

(EMU 2019), and the purpose of the subject is:

In the subject technology comprehension, students must develop competencies and

acquire skills and knowledge so that they constructively and critically can participate in

developing digital artifacts and understand their impact.

Paragraph 2. Students’ mastery of the subject requires mastering digital design processes

and the language and principles of digital technologies in order to be able to iteratively

and collaboratively analyze, design, construct, modify and evaluate digital artifacts in

order to recognize them and to be able to solve complex problems.

Paragraph 3. In technology comprehension students gain competences to understand the

capabilities of digital technologies and the implications of digital artifacts in order to

strengthen students’ capacity for understanding, creating and acting meaningfully in a

society where digital technologies and digital artifacts increasingly are catalysts for

change. (EMU 2019, partly my translation, partly translated by Smith et al. 2020)

The critical-constructive Bildung-centered tradition is reflected in the purpose of technology

comprehension that states that children should be able to constructively and critically understand

the impact of digital technologies in order to understand and act in our society. Therefore, it is

relevant to bring up in this context.

Even though there are clear similarities between then and today, there are, however, also clear

differences. Though we still face many of the same problems and challenges as we did 50-60 years

ago, we do have easier access to computer devices and software, and hence have much better

opportunities to move from thinking and designing algorithms to (also) programming and testing the

solutions in practice. Excessive development of software has made it easier for children to create

plugged designs, that is, where the solutions can be programmed and tested in reality. Therefore,

they can go a step further than merely orientate themselves about the application of their solutions.

For example, in technology comprehension as a subject, Digital Design and Design Processes is

regarded as one of the competence areas that aims for students to understand the possibilities and

consequences of data processing. This has solved one of the challenges that the Johnsen

Committee pointed out in the 1972 report: that students would not be confronted with the

consequences of their solutions when they ‘plug’ them to a computer.

At the same time, the Johnsen Committee was aware of the risk that a subject would be centered

on machines and not on humans, for example that use of a programming language with strict formal

55

structures and technical details could limit the creativity of students. Naur’s model (Figure 3) can

remind educators to reflect on this when planning their teaching by remembering the symmetrical

relation between people, problems, and tools, and not, for example uncritically focusing on using a

specific tool that the students do not understand as a tool, or digitalize a solution for a problem that

students do not regard as a problem.

In Figure 5, I developed Naur’s model into a contemporary perspective that can serve as a didactic

framework when planning, conducting, and evaluating teaching in a subject today with the

intention to use tools to solve problems for people:

Figure 5. Subject-specific didactic framework for planning and evaluating teaching in technology

comprehension – based on Naur 1965

Educators can, for example, use the framework to plan their course based on the three perspectives

by asking:

 What is the relationship between problems and people? Do the students consciously solve a

problem that has relevance for people? The questions allow the teacher to see whether the

students are working with authentic problems, or whether they risk working with digitalization

simply ‘because we can’.

 What is the relationship between people and tools? Do the students understand and think

about the tools as appropriate things for solving problems? These questions will help the

teacher become aware of whether the students have what it takes to solve problems, and

whether they understand the tools used for open problem solving, or whether there is a risk

that students’ limited functional user skills will limit their use of tools.

 What is the relationship between tools and problems? Are the tools used to solve problems

that the students actually regard as problems? Here, the teacher can become aware of

56

whether the tools are used to solve problems, or whether there is a tendency for using the

tool to become the goal in itself.

Educators can ask themselves the same questions during and after a course in their formative

evaluation of their own or others’ teaching. In this way, they can become aware of implementing

technology comprehension in meaningful ways when solving authentic problems by using tools. And

although tools play a significant role, they can avoid operational uncreative mastery of tools to be

the ultimate goal, as well as remember that the importance of the problems students should solve

should be relevant to people. In Chapter 5.3, I demonstrate a way of using the framework in practice

today when presenting an experiment that I co-designed.

4.2 Historical Approaches

This study was conducted in collaboration with Professor Aman Yadav. We surveyed the historical

routes of computational thinking, and how history can inspire and inform initiatives and progression

today. Our results were published as an article, which is included in this dissertation as Article A.

Our views on what and how are especially based on perspectives by the Danish professor Peter Naur

from the 1960s. With regard to how, we add to today’s focus on using computers and learning to

program (‘plugged’) by introducing ways of teaching computational thinking without a computer as

well (‘unplugged’), and we illustrate how historical approaches to teaching in the field can serve as

inspiration today.

4.2.1 Method

This study was motivated by Denning’s paper on remaining trouble spots with computational thinking

(2017b). In this paper, he asks, “What Is Computational Thinking?” As I have described in the

introduction to this dissertation, Denning states that a “good place to look for an answer is in our

history”. In a chronological order, Denning briefly presents historical discussions among researchers

regarding the field of computational thinking. Our study took these references as a starting point,

continued with Danish perspectives based on Naur’s theories, and finally analyzed what these

historical theories and thoughts mean with regard to teaching computational thinking in K-9

classrooms today.

In this manner, we used a snowballing technique to collect parts of our empirical material, combined

and compared this material with the empirical material, described in detail in Chapter 4.1 (Danish

historical theories), and then analyzed how these theories would impact practice. In this regard, the

main contribution of this article is historical perspectives on how, combined with present

perspectives.

57

4.2.2 Analysis of Why and What

In this article, we presented historical discussions on why everyone should develop computational

thinking skills, what skills they need to learn, and how, with a specific focus on Danish historical

discussions in the field, especially discussions by Naur. In Chapter 4.1, I presented and discussed

Naur's perspectives in more detail, and I will therefore refer to that chapter regarding his thoughts

and theories and not repeat them here. To briefly sum up, though, what is important in this context is

Naur's focus on his term datalogy – the science of data, their nature and use – rather than the

American term computer science that emphasizes computers and therefore indicates that machines

are the most central part.

Naur focused on human thinking and understanding rather than on just learning to program. In our

article, we explained how he “saw programming as a tool that can influence students’ thinking in

ways where they see problems and possible solutions based on a tool’s perspective and what that

specific tool is capable of” (Article A). Based on Naur's perspectives, we argue how teaching

programming from a tool's perspective with closed-ended solutions “does not alone develop deep

understanding and wicked problem-solving skills” (Article A). We argued that human creativity and

innovation must be at the center and that computing tools play an ancillary role.

In the following, I discuss how to move beyond merely focusing on computers by introducing

alternative ways of working with students' thinking rather than working with specific tools.

4.2.3 Analysis of How

Based on the historical discussions, we advocated for combining unplugged and plugged

approaches when teaching computational thinking. In our view, this provides students with a better

understanding of what computer science is and that what happens in the machines is not magic. A

machine cannot think – it “simply runs programs, designed by human brains” (Article A).

For example, instead of – or combined with – using programs with intuitive interfaces that are easy

to use without understanding, for example to program a robot, the students could work with basic

flowcharts to visualize and come to understand how traditional algorithms that execute instructions

step by step work. I elaborated on that idea in Chapter 4.1.3.

Working with unplugged flowcharts is not sufficient, though. Instructions must be so precise that

machines can understand them. An algorithm does not require human judgment (Denning 2017b),

and therefore we argued that students eventually need to implement their algorithms in a machine

to test their computational ideas and solutions to gain an understanding of automation processes

and what computers are capable of (and not capable of). For example, Denning argues that the

present computational thinking movement presents algorithms as any sequence of steps, such as

58

the procedures we follow in our daily life and that this makes fuzzy and overreaching claims about

what computers can actually do. With this in mind, we argued that examples from daily life, like

packing a backpack, tying shoelaces, or baking cakes “might be useful to illustrate and connect the

idea of algorithms with well-known activities – but they should not stand alone” (Article A).

Another unplugged way of learning how computers work is inspired from early work on computer

science in the classroom from the 1980s. Figure 6 shows a group of grade 5 students using

matchboxes to build a model of a computer to understand its different parts and how it works.

Figure 6. Grade 5 students are building a model of a computer out of matchboxes. Photo: Dansk

Skolelederforening (Frandsen 1983)

The teachers explained:

In principle, the model was built as a computer; i.e. it consisted of an input unit, a control

unit, a calculation unit, a unit for internal storage and a readout unit. The storage unit

consisted of 12 small boxes, while the other units consisted of large boxes. After the students

had assembled a model, they reviewed several examples of instructions for use

(programs). Through this, the students got to know the different units on a computer by

something tangible and concrete. (Frandsen 1983, my translation)

The students worked with automatic control, for example of a crane or a traffic light, and registers,

for example statistics of book lending at the library.

The purpose of teaching the students to understand computers and how they worked was:

59

to help demystify and dedramatize the use of microprocessors and computers.

Dedramatization should not be used to eliminate critical attitudes to the use of computers

and new technology. On the contrary, the teaching should help replace mysteries, myths,

misunderstanding, and rumors with knowledge, understanding, skills, experience and

attitudes. (Frandsen 1983, my translation)

Our main point was to illustrate how historical ways of learning about computer science might help

today’s students understand the development up until today, and make it easier to understand how

computers work today.

Sixty years ago at NASA, humans were calculating and analyzing the trajectory of space flights by

hand with the use of calculating machines, and these equations were later programmed into a

computer. Such people were referred to as ‘human computers’. This is another example that

illustrates how a computer runs programs that are designed by human brains. When NASA switched

from ‘human computers’ to ‘automatic computers’, astronauts were in fact “wary of putting their lives

in the care of the electronic calculating machines”. For example, the American astronaut John Glenn

wanted a human “to run the same numbers through the same equations that had been programmed

into the computer, but by hand, on her desktop mechanical calculating machine” before he wanted

to go15.

Historical ways and approaches to teaching are not sufficient today, though. For example, today

there is a need to understand how machine-learning algorithms work and not only step-by-step

algorithms. I will elaborate on that in Chapter 4.3 and Chapter 5.1.

4.3 From Historical to Present Perspectives

This study was completed in collaboration with Bundsgaard and was published in an article, which

is attached to this dissertation (Article B). We examined computational thinking and technology

comprehension in a historical perspective from the 1960s and up until today with a focus on Danish

educational developments in the field. We presented discussions and initiatives chronologically and

described the development as being a round-trip, because foresighted discussions and experiments

from around 1960 to 1980 looked very similar to the ones we see in Denmark today. For example,

the previously mentioned subject data education focused on computational problem solving and

included understanding digital technology in a societal perspective. Therefore, we believed that

experiences and lessons learned could serve as inspiration today with regard to why we need to

teach what aspects of computational thinking in compulsory education, and how, in order to prepare

15 This story is told on NASA’s website: https://www.nasa.gov/content/katherine-johnson-biography.

https://www.nasa.gov/content/katherine-johnson-biography

60

students to live in today’s society and the society we will be living in in the near future. Hence, we

explored how the subject had developed, declined, and now re-developed over time and up until

today in order to derive inspirational perspectives.

As was the case for the previous study, we based this study on Naur’s theories. In previous chapters,

I have discussed how his perspectives can serve as inspiration today. In continuation of this, the

purpose of this study was to present the development up until today and discuss how our historical

perspectives are only stepping stones. The world looks very different today than it did in the 1960s,

1970s, and 1980s, and therefore we need to add to history regarding why students need to learn

what, and how.

4.3.1 Method

Methodologically, the study was based on an explorative literature search. Specifically, we searched

for literature that included concepts such as “datalogi” (datalogy) and “datalære” (data education),

we searched for literature and key people who have been mentioned in the public debate,

participated in legislative work, and designed teaching resources, and we talked to stakeholders

from that time.

Our empirical material is limited to initiatives within, and discussions about, computer science as well

as digital technology in K-9 schools. As stated in the article, it includes:

statutory provisions in the form of factual presentations of educational policy initiatives in

the area, including official subject descriptions and decision-making processes; academic

theory in the form of descriptions and analyses of what researchers within computer

science and education have, over time, emphasized as important in a general education

school; and events in practice and in the societal debate in the form of descriptions and

analyses of how society and schools in practice have acted within the individual periods.

(Article B)

We analyzed historical events, and identified four periods from 1966 until the present. We prepared

a timeline (see Appendix 1 of Article B) to illustrate trends, central initiatives and discussions to

thereby be able to compare the key initiatives and debates in the various periods. And, finally, we

discussed how the periods have affected the development in the field.

Additionally, we had conversations with Denning about the development to elaborate on his

theories about what he has entitled new computational thinking – in contrast to historical

computational thinking. Here, I bring his perspectives up front to discuss how the world looks different

today, and what this means for education.

61

4.3.2 Analysis of Why and What

Our analysis of the development of computational thinking and technology comprehension in

Danish compulsory education, illustrates four periods from the 1960s and up until today.

Period one (1966-1990) was focused on data education, based on Naur’s ideas about teaching

datalogy in K-9 schools. The purpose basically was to enable students to think critically about the

role of computers in society and to think computationally.

Period two (1990-2000) was focused on operational user competences and infrastructure. Focus

shifted to enabling students to use the machines, for example how to turn it on and off, how to save

documents, and how to use a word processor. In Denmark, computers were on the verge of being

integrated into all subjects. Therefore, focus was also on getting a large number of devices and

connecting them to the burgeoning internet.

Period three (2000-2016) was focused on procurement of hardware and development of teaching

resources. Schools bought not only traditional computers, but also interactive whiteboards and

tablets, and later on also robots, 3D printers, etc. There was also focus on developing teaching

resources and integrating computers in daily teaching. This generated a big market for digital

learning resources.

Period four (2016-present) is focused on computational thinking and, in a broader perspective, on

what in Denmark is called technology comprehension. In Denmark, this period began with initiatives

such as Coding Pirates and FabLab@SCHOOLdk and debates about IT didactics. Worldwide, this

period began with Wing who re-introduced computational thinking as an important competence in

line with reading, writing and arithmetic similar to what Peter Naur did in the 1966. Wing’s and Naur’s

perspectives are different, though. Naur emphasized that all children should learn to understand and

use the machines, whereas Wing proposed they learned to think like computer scientists, highlighting

programming concepts such as computational steps and algorithms.

In this regard, Denning argues that emphasis on programming largely excludes other areas within

computer science. Though, he is positive about the efforts to make computational thinking more

accessible, he warns that a lack of insight into the long and comprehensive history of computational

thinking causes a poorer and narrower version of it than has been the case historically.

First, he points out that the concept of algorithms in the new computational thinking movement is

based on outdated notions about algorithms as step-by-step procedures, which is not true today due

to the massive use of, for example, machine learning in society. Also, as I have discussed in the

above, the new movement presents algorithms as any step-by-step instruction (for example,

instructions on tying a shoelace, baking a cake or brushing one’s teeth). He foresees “a risk that

62

students will believe that computers can do more than they actually can, and that we will fail to

distinguish between what people can do that computers cannot. [...] This ignores the essential

requirement that the algorithm has to be accurate enough for a machine to execute it without

human assessment or interpretation” (Article B). Therefore, Denning argues that computers are

important in the formulation of algorithms, since algorithms are designed to direct computers.

Computational thinking “involves mental habits and methods to find out how to get computers to do

a job for us” (Article B, my italics).

Another issue that arises from new computational thinking being focused on algorithms is its focus

on formal evidence when deciding whether a program works or not. Denning says that evidence is

useful when it is possible to obtain, but that a system depends on other methods for reliability. “Much

of computing is not about programming but design of computations, and much of design draws from

engineering rather than mathematics”. In addition: “Users – not programmers – decide whether a

solution successfully performs a job and is useful. Therefore, students should learn to listen to users

and incorporate what users say in their design” (Article B).

Second, he argues that computer scientists not only think about programming and that this emphasis

on programming excludes other areas such as “artificial intelligence, data analysis, neural networks,

quantum mechanics and so on, all of which depend on computational thinking with hardware,

computer systems, networks, simulation and design” (Article B).

This discussion encouraged me to further analyze why computational thinking is essential to teach

in compulsory education, and what aspects of it are essential to teach in our present and future

society.

4.4 Sub-Conclusion of Historical Perspectives

In this chapter, I have examined whys, whats and hows of computational thinking in a historical

perspective. The purpose with looking at history was, motivated by Denning, to learn what

researchers and educators have already discussed in the past and what conceptions of the subject

they had to see whether their perspectives could possibly have a positive impact on today’s

discussions and conceptions.

With regard to why, I found that 50-60 years ago, Peter Naur argued that everybody should learn to

understand data, their nature and use in a democratic society. His reasoning was that datalogy,

similar to language learning and mathematics, is an important aid for a number of general activities

that are relevant to our general life and to all disciplines. He stated that people would need to

understand datalogy in order to be able to influence decisions in our society, and therefore –

illustrated by examples of how datalogy affects the lives of all individuals from his own time and the

63

future as he anticipated it – he said that this understanding should be taught in compulsory

education.

In continuation of Naur’s thoughts, a committee established by the Ministry of Education described

that the purpose of the subject data education in compulsory education should be to give insight

into fundamental, interdisciplinary datalogical issues and concepts, to communicate knowledge

about possibilities and limitations of computers, and to inform about applied data processing and

societal advantages and disadvantages associated with extensive use of automatic data

processing.

With regard to what, I found that datalogy – data, their nature and their use – was at the heart of a

subject, according to Naur. He believed that a subject should focus on the elementary parts of

datalogy, such as the concept of data, representations and formal data processes. He did not

consider the computer to be the most central part of a subject, but he considered it a good idea to

illustrate and do exercises with concrete equipment to realize data processes. For example, make a

computer program perform certain actions in the form of algorithms.

Whereas Naur formulated his thoughts in more general terms, yet in detail, a committee set up by

the Danish Ministry of Education described more specifically what students should learn. They

suggested the following overall topics: the concept of data; problem formulation and task structuring;

the concept of models and model types; the concept of algorithms; the basic structure of a computer;

and data processing systems, data processing applications, and societal aspects.

In the previous review of present conceptions (state-of-the-art), the analysis showed that today

computational thinking is mainly regarded as concepts related to mathematics, which is in contrast

to – or is more limited than – these broader historical perspectives on what students should learn.

Even though the historical perspectives were broader than the perspectives of today on what

students should learn about such concepts, they are, nevertheless, still not sufficient today. In my

studies, I saw that, historically, contemporary data model types that used, for example machine

learning were – for obvious reasons – not included, which is essential today.

With regard to how, I found that a substantial part of historical how-examples in the classroom were

unplugged. I argue that such unplugged ways of learning computational thinking skills could also

help today’s students develop a deeper understanding of how machines work and that what

happens in them is not magic; rather that computers run programs that are designed by human

brains. For example, by working with the concept of data, by using flowcharts to describe primitive

algorithms, or by constructing a computer, students could gain a better idea of what they are dealing

64

with. Therefore, I argue that unplugged ways can complement a present subject and push it beyond

merely focusing on a programming environment.

In addition, using a triangular model of people, problems, and tools, Naur illustrated how the three

elements interact, and that focusing on, for example, programming as a tool, could limit our creativity.

Therefore, rather than just learning specific tools plugged, students can benefit from unplugged ways

of learning to develop their thinking in creative ways that are detached from specific tools.

The analysis showed that working unplugged is not sufficient, though. As was also discussed in the

past, there is a need to implement algorithms in a machine, for example to test whether the algorithm

is precise enough for a computer program to follow the instruction, and to understand what

computers can and cannot do. This was a challenge 50-60 years ago when computer programs –

and computers in general – were much more limited than they are today. Today, there are greater

opportunities to work with computers as well.

The majority of my historical studies centers on Naur's subject-specific educational theories. These

theories can be seen in continuation of Klafki's general educational theories in that they both

emphasize societal and democratic reasons for subjects to be included in compulsory education in

a general Bildung perspective and not for specific career purposes. Moreover, both Klafki and Naur

emphasize project activity in terms of developing competences in an application-oriented context

instead of acquiring knowledge or learning concepts out of their context. This is one of the reasons

why Naur's subject-specific didactic theories are well-suited to and valuable in a critical-constructive

Bildung perspective.

Naur expected that the changes required for a subject in datalogy to be included in compulsory

education would take decades. Even though pioneers prepared the foundation for the subject data

education, and described possible solutions to challenges in detail, politicians and decision-makers

in Denmark decided that they would not implement the new subject. Today, though, there is a

renewed interest in a similar subject – technology comprehension – that aims for everyone to

understand digital technologies. Data is an inevitable topic, and in this regard, Naur’s thinking is

valuable and inspirational.

Though I argue that we can learn from history and should build on it instead of reinventing the wheel,

I do, however, argue as well that we need to improve that wheel. Society has gone through massive

changes concerning digital technologies and the use of data. Therefore, with reference to my

didactic position and Schnack's arguments on the importance of determining current problems in

society when embedding subjects and their didactics, historical perspectives are not enough for

students today to learn to understand computers. For example, students need to learn to understand

65

machine learning as well so they can participate in – that is, influence as well as navigate – today’s

society.

Moreover, when Naur discussed how datalogy affects our inner way of thinking, he also said that he

did not expect that datalogy would come to affect the external form of our daily lives in the same

way that, for example, cars or television had done (Naur 1967). In my view, this expectation has

proven to be wrong. Though datalogy is a way of thinking and dealing with problems, it has also

affected the way physical products are designed today (for example things that are referred to as

‘smart’: apps in smartphones, programs in smartwatches, etc.). And even though datalogy as a tool

for thinking about problem solving has made such products possible, I would argue that such

products highly affect the external form of our daily life today. The next chapter focuses on present

time with a view to a possible future.

66

5 Present Perspectives

This chapter is centered on present time. With reference to my didactic position, described in

Chapter 2.3, I elaborate further on my studies regarding why and what and their consequences for

how from a critical-constructive Bildung-centered position. Central parts of these studies discuss

conceptions of computational thinking that are broader than the conceptions held by the new

movement, in that they include an awareness of the history of computational thinking as well as the

principles of computing that resemble the highly-digitalized world that children are part of today.

Even though history can inspire our thinking today, the world has changed since the 1960s. To

answer my research questions, it is therefore essential to analyze why what is important to learn and

how in the present and a future society in order to be able to deal with the challenges that we face

as a society and as humans.

In Chapter 5.1, I present the results of a study I co-conducted with Bundsgaard. We examined

present societal perspectives on why and what in terms of how technologies influence our

democracy, how digital technologies influence our personal and social life, and how digital

technologies influence our work life.

In Chapter 5.2, I present and discuss a survey study from 2018 that aimed to examine what

computational thinking is according to Danish school principals, and why/if it should be taught in

compulsory education. The study contributes to my overall project by demonstrating present

discussions in the field from a German-Scandinavian Bildung perspective, exemplified by Denmark

that differs from the Anglo-Saxon perspectives that seem to be the most common in literature on this

topic16.

Next, in Chapter 5.3 I present a design experiment performed in collaboration with PhD Martin

Dybdal. The experiment is based on the didactic position as well as theories on why and what that

are described in this dissertation, and from that perspective, it illustrates a possible how in the

classroom.

5.1 Societal and Democratic Perspectives Today

In 1968, Peter Naur argued that it was absolutely untenable for an area that affects key decisions to

give up and leave everything up to the ‘experts’. Although he discussed data use and data

processing in the future, he referred to examples from the society of his time. For example, back then

the internet was not even invented. In this study, we examined what consequences digital

16 Five of the six articles in the review by Palts and Pedaste are American (see Chapter 3.1)

67

technologies have for society today and could have in the future, in order to discuss what kind of

computational thinking skills students need today. The analysis and results of our study are attached

to this dissertation as Article C.

5.1.1 Method

Our analysis was based on a societal-/ideological-critical position with the aim to “change (improve)

the world, human awareness, and future possibilities by students developing responsibility and

competences to act on big problems in society” as discussed in Chapter 2.3.5.

As argued in the same chapter, moral is important in this didactic position: “education and Bildung

are committed to dealing with societal challenges”. Thus, we need to examine societal challenges

to determine why we need to teach what and, next, how. This is what we have done in this study

that takes the form of didactic theoretical reflections and use empirical examples.

5.1.2 Analysis of Why and What

Early pioneers such as Naur argued 50-60 years ago that everybody should understand computer

programming and be able to influence the development of society. Even though arguments on

teaching datalogy in compulsory education are basically still the same, society has developed.

Therefore, we need to examine and develop our thoughts on what is needed today for students to

understand computer programming and be able to influence the development of society.

In our article, we reflect on how humans have “achieved enormous progress for individuals and

society as a whole, but we have also seen an abundance of examples of how secret algorithms

increasingly mislead us rather than guide us” (Article C). Exploring the use of digital technologies in

society today, we see that many computer programs are designed as neural networks built up of

parallel algorithms. Therefore, it is not enough to let history guide us on what to teach in compulsory

education, and it is not enough to teach computational thinking concepts such as the ones described

in my analysis of what computational thinking is regarded as in literature today (Chapter 3.1), for

example algorithms as-step-by-step procedures.

In this societal analysis, we argued for a need to add technology criticism to computer science and

design (see Figure 7). The name of the subject in the figure, technology comprehension, emphasizes

the need to be able to comprehend (digital) technologies. Therefore, in a K-9 context, I find this term

more suitable than, for example, computing, computer science, or (only) computational thinking in

the new common conception that emphasizes computational steps and concepts from

mathematics.

68

Figure 7. Three aspects of technology comprehension as a subject in K-9 schools: What should schools teach,

why, and how?

In our analysis, we explain that:

In general, computer science can be said to refer to a basic understanding of what data

are, their characteristics and use; design refers to the implementation of design processes

and development of digital technologies that solve relevant issues; and technology

criticism refers to an understanding of the consequences (risks and possibilities) of digital

technologies. (Article C)

The fact that many algorithms today are built as neural networks that ‘learn’ new behaviors through

continuous input has indeed made it much more difficult to understand consequences, risks, and

possibilities of using and designing digital technologies. Remembering what Danish compulsory

schools in a critical-constructive Bildung perspective are about – preparing students to be able to

participate, demonstrate mutual responsibility, and understand rights and duties in a free and

democratic society – there is a need to develop skills within all three aspects of technology

comprehension and not only focus on, for example, technical or mathematical aspects.

In 1968, Naur argued that if “this broad understanding of programming is not effectuated, expert

programmers will gain a power position that can lead to the end of democracy” (Naur 1968). Thus,

we need to implement a subject – today named technology comprehension – in the school

curriculum. In our article, we elaborated on what the students need to learn in such a subject.

First, we presented a number of present and future moral dilemmas with far-reaching consequences

to illustrate why technology comprehension – including technology criticism – must be integrated as

a subject in compulsory education. For example, when government institutions investigate crime

based on historical data on who, when and where, they ‘repeat history’ so to speak:

69

If the police exclusively or predominantly patrol the areas with previous cases of crime,

they will exclusively or predominantly arrest individuals in these areas, and this in turn will

intensify the algorithm. (Article C)

If historical information about our behavior is registered and processed to assess, for example, how

much a customer should pay for a flight ticket or health insurance, this affects equality and our rights

in a democracy. In addition, who should decide what constitutes desirable behavior?

There are also problematic issues related to our democratic rights to speak freely when algorithms

are designed to show different people different news or to decide what content is appropriate (and

thus visible) to others. More examples and more detailed discussions are included in the article.

Thereby, we argued that students must learn to comprehend technology in terms of data, their

characteristics and use, implementation of design processes and development of digital

technologies that solve relevant issues, and understanding of the consequences (computer science,

design and technology criticism). More specifically, we argued that they “must develop an

understanding of how systems work, and they must be able to discuss in a broader perspective the

moral dilemmas and consequences of the choices a designer makes when designing an algorithm”.

5.1.3 Analysis of How

From an organizational perspective, we discussed issues related to how as well. We argued that it is

more likely that students can acquire basic knowledge and skills if they are taught an independent

subject by teachers with specialist knowledge and education.

We believe that teachers with another academic focus cannot be expected to take on this

responsibility; however, all teachers should consider the aims of their teaching subjects and how

technology comprehension as a subject area is useful or even necessary to achieve these aims. For

example, in Denmark in history as a subject a purpose is that students develop competencies to

“relate changes in everyday life and living conditions over time to their own lives”

(Undervisningsministeriet 2019, our translation). In our present society, this includes being able to

comprehend how digital technologies have changed everyday life and living conditions.

5.2 Conceptions in Schools

This study was conducted in collaboration with Bundsgaard and it is included as Article C. In the

context of this dissertation, the purpose was to examine what computational thinking is according to

school principals, and why/if we need to teach it in compulsory education.

This study was conducted in a German-Scandinavian context, more specifically Denmark. As stated

in the formal aims of Danish compulsory education (see Chapter 2.3.7), compulsory school in

70

Denmark does not only aim to prepare children and youth for college and a career, but also aims to

prepare them “to be able to participate, demonstrate mutual responsibility and understand their

rights and duties in a free and democratic society” (Ministry of Children and Education 2018). This

background is important to know since it is reflected in the answers given by the Danish school

principals.

5.2.1 Method

The study was designed as a survey, more specifically a digital questionnaire (see Appendix 1 in

Article D). The questionnaire was sent to school principals of Danish K-9 schools (compulsory

education). It consisted of three parts: Part 1 on technology initiatives in schools, Part 2 on the

teachers’ professional development, and Part 3 on conceptions of computational thinking. In the

context of my research questions concerning why computational thinking is essential to teach in

compulsory education, and what it involves, Part 3 of the questionnaire is relevant to look at.

In the introduction of Part 3, the purpose of computational thinking was specified:

There is no common definition or understanding of what computational thinking involves.

In the following questions, we are interested in the way you understand the concept and

your perspective on the importance of teaching K-9 students CT17. (Article D)

We asked the following six questions about familiarity, definition, importance, relevance, challenges,

and advantages:

 Familiarity: To what extent are you familiar with the term computational thinking?

 Definition: How strongly do you agree or disagree with the following statements about what

computational thinking involves?

 Importance: Do you think K-9 school students should be taught computational thinking?

 Relevance: How strongly do you agree or disagree with the following statements about the

relevance of teaching computational thinking in K-9?

 Challenges: How strongly do you agree or disagree with the following statements about the

potential challenges of implementing computational thinking in K-9?

17 In our article, we used CT as an abbreviation for computational thinking. However, we also used the term

“datalogisk tænkning” (DT, datalogical thinking), derived from the Danish term “datalogi” that emphasizes data

and human understanding rather than computations, as is discussed in Chapter 4.1.

71

 Advantages: How strongly do you agree or disagree with the following statements about the

potential advantages of implementing computational thinking in K-9?

In this context, responses to the question categories Familiarity and Definitions are relevant with

regard to analyzing what, and responses to the question categories Importance and Relevance are

relevant with regard to analyzing why. The question categories Challenges and Advantages have

been stroked through to indicate that they have been left out in the analysis in this chapter.

The full questionnaire including all possible statements is attached to Article C. The questionnaire

was sent to 145 Danish school principals and was completed by 83 principals. As stated in the article,

“the participants who completed the survey included principals from all Danish regions with no

significant differences in terms of gender, school size, or achievement scores” (Article D) 18.

5.2.2 Analysis of What

To analyze what, I examined answers to the questions regarding Familiarity and Definitions. First of

all, to be able to analyze whether the principals’ responses were based on knowledge or thoughts,

it was important to ask to what degree respondents had heard about and had knowledge about

what computational thinking is. Therefore, we asked them a nominal closed-ended question about

to what extent they were familiar with the term. They could choose between the following four

options:

 I have never heard of it.

 I have heard of it but have limited knowledge.

 I have read/watched videos about it and/or had it explained by colleagues/at conferences.

 I feel familiar with the concept and national/international discussions on it.

As is seen in Figure 8, 73 percent of the principals assessed themselves to have some degree of

knowledge about computational thinking, and 27 percent said they had never heard of it.

In the following analysis of definitions (Figure 9) and relevance (Figure 11), I only include responses

from principals who reported they have some degree of knowledge.

18 The full analysis as well as methodological approach is available in Article D.

72

Figure 8. Principals’ familiarity with computational thinking

Next, principals were asked about how they define computational thinking. More specifically we

asked them a closed-ended Likert scale question to measure how strongly they agreed or disagreed

with eight different statements about what computational thinking involves. We designed the

statements “to cover the most commonly heard arguments. Specifically, policy documents, research

articles and debates regarding the idea of teaching computer science to everyone have informed

our statements” (Article D).

The eight statements were

 Computational thinking involves understanding and formulating algorithms.

 Computational thinking involves working with data (collecting, processing, communicating).

 Computational thinking involves knowledge of computers to solve tasks using a computer.

 Computational thinking involves critical thinking regarding the role of digital technologies in

our life and society.

 Computational thinking is more or less the same as programming and coding.

 Computational thinking involves solving problems in systematic and logical ways.

 Computational thinking involves using computers to solve problems and perform tasks in

easier ways.

 Computational thinking involves a number of general principles of problem-solving with or

without the use of computers.

Figure 9 illustrates their answers sorted in an increasing order, with blue and green representing

agreement, and orange and red representing disagreement.

73

Figure 9. Principals’ definition of computational thinking

The answers were in general characterized by a high degree of agreement. Our analysis showed

that the principals in our survey to a high extent agreed that computational thinking involves general

problem-solving skills. Specifically, 94 percent agreed that computational thinking involves solving

problems in systematic and logical ways, and 84 percent thought it involves a number of general

principles of problem-solving with or without the use of computers. In addition, as many as 91 percent

agreed that it involves critical thinking regarding the role of digital technologies in our lives and in

society. They agreed the least that computational thinking more or less involves the same as

programming and coding (42 percent), that it involves knowledge of computers to solve tasks using

a computer (62 percent), and that it involves understanding and formulating algorithms (72 percent).

80 percent believed it involves using computers to solve problems and perform tasks in easier ways,

and 82 percent said it involves working with data.

A general pattern in our data was a high degree of agreement, which suggests that respondents

from our survey had broad views on what computational thinking involves. When we further

analyzed the categories they agreed the least on, however, we found that “principals agreed the

least on computational thinking as being equal to basic technical skills and knowledge (the same

as programming/coding and knowledge of computers)” and that “they agreed less on subject-

specific definitions (understand/develop algorithms, using computers to solve problems more easily

and work with data) than on definitions including more demanding mental skills such as critical

thinking and problem-solving approaches (general principles of problem solving, critical

considerations and solve problems systematically)” (Article D).

5.2.3 Analysis of Why

To analyze why, I examined the responses from the question categories Importance and Relevance.

With regard to importance, we asked principals if they thought K-9 school students should be taught

computational thinking. In Figure 10, their answers are broken down by principals who assessed they

74

had some degree of knowledge of computational thinking and principals who said they had never

heard of it. They had three options to choose from:

 Yes, as a separate subject (and perhaps also integrated in other subjects)

 Yes, integrated in other subjects

 No

Figure 10. Principals’ views on the importance of teaching computational thinking as a subject

As is seen in the figure, the majority of principals regarded computational thinking as important to

teach in compulsory education (95 percent and 97 percent). Most of these principals thought it

should only be integrated in other subjects and not as a separate subject. The principals who

assessed themselves to have some degree of knowledge of computational thinking were, however,

more positive towards a separate subject (19 percent compared with 10 percent).

With regard to the relevance of teaching computational thinking, principals were asked how strongly

they agreed or disagreed with eight different common statements about the relevance of teaching

computational thinking in K-9:

 Computational thinking only prepares students for the labor market, and K-9 should not focus

on developing this skill.

 K-9 students should learn to understand principles of data in order to understand and act in

an increasingly digitalized everyday life.

 Developing computational thinking is as important as developing reading, writing and math

skills.

 Computational thinking should be an optional subject for those interested in the field, and

everyone should not be forced to learn computational thinking principles.

 The future job market has a need for more digitally skilled employees.

 Computational thinking is an important part of students’ digital Bildung.

75

 From their experience with digital devices in pre-school, students are already digitally

Gebildet19 when they start school.

 Teachers are important when facilitating technology training (e.g. discussing

danger/potentials of technology or setting challenging tasks).

Figure 11 illustrates their responses. Again, the responses are sorted in an increasing order, with blue

and green representing agreement, and orange and red representing disagreement.

Figure 11. Principals’ attitudes towards the relevance of teaching computational thinking

The results show that whereas a small percentage of the principals think that computational thinking

is important with regard to preparing students for their future jobs (3 percent), by far the majority of

the principals think that it is an important part of students’ digital Bildung (98 percent). Children are,

in the views of 87 percent of the participating principals, not digitally Gebildet when they start school

just because they have already had experience with digital devices in pre-school, and as many as

98 percent find teachers important with regard to facilitating technology training, which indicates

that computational thinking is not something they think children learn “by themselves” by using

digital technologies. A total of 98 percent think compulsory education should introduce the principles

of data in order for children to understand and act in an increasingly digitalized everyday life, 81

percent think that computational thinking should not be optional to learn in school, and 69 percent

actually think developing computational thinking is as important as developing reading, writing and

math skills.

As was the case with their responses in the category Definitions, responses in the category Relevance

suggested that the principals who took part in the survey had broad views on why computational

thinking is important to teach in compulsory education.

19 Gebildet is the adjective form of Bildung.

76

5.2.4 Subsequent Reflections on Methodological Approach

This study was planned and conducted in January-February 2018 when I had just started my PhD.

At that time, the description of the Danish subject technology comprehension and its four

competence areas (one being computational thinking) had not yet been published, and

computational thinking was not a well-known term. The survey data shows that only seven percent

of the participating school principals felt familiar with the term. Moreover, my own understanding of

the term has developed since 2018, and the statements designed to cover the most common

definitions and common arguments are not consistent with how I would have designed them today.

The primary purpose of the questionnaire was to select ‘focus’ and ‘non-focus’ schools that I could

observe20. Therefore I wanted to assess the school principals’ conceptions of the term to examine a

kind of ‘state of the art’ in schools as a starting point for my studies. Specifically, I wanted the questions

to reflect some of the discussions I found present at that time. Concerning the category Relevance

(if/why) I wanted to know whether the principals thought of computational thinking as a

competence that prepares students for the labor market or as Bildung in a digitalized society; if they

thought it involved computers, if they thought that students are already able to think computationally

when they begin school and therefore did not consider teachers and education to be important in

this regard, rather optional to teach and learn; if they found it important for students to understand

the nature of data; and if they saw computational thinking as important as reading, writing and math.

Concerning the category Definitions (what), I wanted to know whether they saw computational

thinking as a machine-focused technical competence, for example as being equal to programming,

rather than as a more general problem-solving approach to working with data; and whether they

thought it involved critical thinking.

When asking these questions and formulating the statements, my own thoughts on computational

thinking were colored by international discussions on computational thinking as a way of thinking

that did not necessarily involve a computer. During my studies, though, I have developed my own

thoughts on what computational thinking is. I used to think computers were not that necessary in

order to become a competent computational thinker. However, based on my analyses, it is today

my belief that computational thinking is a way of (human) thinking about getting computers to solve

tasks (for humans), and that working with computers is required to develop as a competent

computational thinker.

20 See Chapter 2.1 concerning my intended research design.

77

Today, I would have used my knowledge on present versus historical whats and whys of

computational thinking, and asked the school principals whether they agreed more with one or the

other, whether they thought it was essential to teach, and why. I would have asked whether they

thought computational thinking could prepare students to live and work in a democracy and

whether they additionally found design thinking and critical thinking skills essential, and why.

Thereby, the statements would have been consistent with my understanding today, and I would

have a better foundation for determining whether the understanding of Danish school principals

reflects the German-Scandinavian Bildung traditions of schools and their purpose.

Furthermore, it would be interesting to ask American school principals the same questions to see

whether their answers differ and reflect the Anglo-Saxon traditions more. As Gundem and Hopmann

argue21, comparative research and exchange of traditions are important when collaborating and

discussing central concepts and their meanings.

In the following, I present a design experiment on teaching computer science today; that is, I illustrate

a possible how inside the classroom.

5.3 A Computational Design Experiment

Until now, the majority of my studies has been concentrated on theoretical didactic analysis and

visionary perspectives with regard to why we need to teach computational thinking in compulsory

education today, and what aspects of it are important to teach. Didactics, however, refers to both

theory and practice planning. As argued by Nielsen (see 2.3.3), theorizing is insufficient.

This experiment contribute to the didactical question how, and is scientifically based on my

theoretical studies concerning the questions why and what. In that sense, the didactical theories from

my studies have enriched practice, and I anticipated that practice could possibly enrich the theories

as well through practical experiences. Therefore, I conducted a design experiment in collaboration

with PhD Martin Dybdal. A description as well as the analysis and results of the experiment are

attached to this dissertation as Article E.

The experiment is a didactic contribution to the subject area technology comprehension. In this

context, we regard technology comprehension as a discipline that involves developing

competences in the fields of computational thinking, design thinking, and critical thinking

concerning the use of computer science in society. With that, we refer back to the analysis presented

21 See Chapter 2.3.1: German-Scandinavian Notions of Didactics.

78

in Chapter 5.1 on the three aspects of technology comprehension: computer science, design and

technology criticism.

5.3.1 Method

While Dybdal was responsible for teaching, I was responsible for observing the teaching, for writing

field notes and for having conversations with the students. In addition, a female computer-science

student participated as an assistant teacher. We conducted our experiment in a Danish eighth-grade

class with the purpose to examine a way of teaching computational thinking and design thinking by

developing a computational design to solve an authentic problem.

Methodologically, we based our experiment on design-based research to explore our theories in

practice and to analyze and discuss improvements based on our experiments. We did not conduct

our experiments with iterations, though, as is common in design-based research, but we present our

course and analysis as a contribution to subject-specific didactic theory. In addition, by presenting

our course in-depth, it is possible for others to test and improve it.

5.3.2 Analysis of Why and What

As stated, this is an example of how based on my conclusions regarding why and what that have

been presented in previous chapters of this dissertation. In short, I have argued for the need (why) to

teach technology comprehension in K-9, and that such teaching, at an abstract level, should involve

competencies within computer science, design, and technology criticism (what). In this presentation

of our experiment, I therefore concentrate on how. This how is based on Klafki’s critical-constructive

understanding of Bildung as also being a societal issue. Specifically, it is based on an environmental

key problem in modern-day lives: how to reduce CO2 emissions by reducing electricity consumption.

5.3.3 Analysis of How

There is not one single best practice – not one single how – but many good practices. Specifically, in

this experiment we mainly concentrated on computational thinking and design thinking, and only

secondarily on technology criticism.

The students were to work with a problem-oriented authentic project that we had selected: They

were to develop a prototype of a physical, programmed design that they thought could help people

reduce their electricity consumption and thereby CO2 emissions. The students were to retrieve data

about Danish real-time CO2 emissions from the data provider electricitymap.org, and were to

program LED lights to show (for example, with specific colors and/or patterns) when electricity

consumption in Denmark is high and low, respectively; that is when it is most and least harmful to the

environment. They were to integrate their programmed LED lights in a physical design that they

79

developed themselves based on reflections on what it should look like and where it would be best

placed for its users to see it:

If, for example, consumers can see that CO2 emissions are high at a given time of day, they

may be encouraged to delay turning on their dishwasher or charging their mobile phone

until emissions are lower, because this would entail that the energy being used is greener.

(Article E)

More specifically, we based the course on Naur’s theories of datalogy (see Chapter 4.1) as an

interplay between humans and computers. When planning, conducting, and assessing the course,

we used Naur’s people-problem-tools model (Figure 3 and Figure 5). We “explained to the students

that they were to design solutions for people for a current problem in the world, and that they needed

some tools to solve the problem” (Article E).

Moreover, to make the process visible for the students in terms of what was going to happen in the

course of the next three days, we introduced a design model (see Figure 12).

Figure 12. Our design model22 with the experiment’s specific content area: “the climate problem and energy

consumption”

Our course is described in detail in the attached article, and our teaching plan, teaching slides, and

copy sheets are freely available. Therefore, I will not repeat the course in detail here, but just briefly

describe the five phases to illustrate how we designed it based on the didactic and subject-specific

theories and visions presented in previous chapters.

 Understand climate problem and energy consumption: introducing our design model, open

dialogue about climate change, learning about power consumption and power production.

22 The model is inspired by Værktøjskassen (The Toolbox) (Katapult/TEACH 2013) and a design model from

the School of Design, Stanford University.

80

 Understand data from electricityMap and delimit project: introducing electricityMap.org,

introducing Naur's people-problem-tools model (Figure 3) with examples of why well-known

tools are designed the way they are (what problems do they solve for people?), introducing

programming of LEDs, pair programming of LEDs.

 Come up with ideas for designs that can reduce CO2 emissions: discussing good and bad

designs, planning own designs.

 Build prototype for design: build prototype for design (alternating between programming the

LEDs and building).

 Test prototype with users: peer feedback (‘user feedback’).

The last phase led the students to improve their designs (which meant moving two steps back in the

model to planning and then building) with the intention that they experienced the iterative nature of

working as a ‘computational designer’.

Computational design is a term used by Denning who argues that:

Clearly, designers are a subset of thinkers because you need to be a computational thinker

to design computational tools; and not every thinker is a designer. Also, designers are tool

users, but not all tool users are designers or thinkers. (Denning 2017a)

We found that this term suited our experiment well in that the students constantly alternated

between developing/using computational competencies (programming of the LEDs) and design

competencies (building their prototype, testing it with users).

As seen in Figure 7 with the three aspect of technology comprehension (computer science, design,

and technology criticism), the students worked directly with computer science (understood mainly

as a basic understanding of what data are, their characteristics and use) and design (understood

mainly as the implementation of design processes and development of digital technologies that

solve relevant issues). We did not articulate technology criticism (understood as mainly

understanding of the consequences (risks and possibilities) of digital technologies). However, when

discussing the people-problem-tools model as well as what a good design is, we did talk about the

importance of designs as being relevant to people, and we did discuss the possibility of the digital

technology they were designing to help reduce CO2 emissions.

A shortcoming of this project was that students only learned about sequential algorithms; that is, they

did not learn about machine learning which I previously described as being important in our present

society. It would be interesting to progress with learning about machine learning models – for

example computational designs that use neural networks to counteract climate change.

81

5.4 Sub-Conclusion of Present Perspectives

In this chapter, I examined whys and whats and hows of computational thinking in a present

perspective. Even though I have argued that historical perspectives are important to know and take

into account when looking at present time, I also argue that historical perspectives are not enough.

The world has changed in many ways since the 1960s – especially in the field of digital technologies

and use of data. When discussing a subject today, it is, from the didactic position that I have built my

work on, necessary to examine what the world that children today live in, and will live in in the future,

looks like. Therefore, I have examined why what is important to learn in the society of today and of

the future in order to be able to tackle the challenges that we face as a society and as humans, as

well as how.

With regard to why, my analysis showed that Naur’s arguments in favor of establishing a specific

subject are still relevant: All people need to develop an understanding of computers and

programming to be able to influence decisions in society. Contrary to the past, our present society is

now to a high extent dominated by those who understand how computer systems work, for example

by so-called tech-giants such as Google and Facebook that implement models that, based on data

about us, determine what we as users of their systems can see on our screens. And smaller

companies use services that collect and process our data through machine-learning models to

predict and affect how we act. Such models threaten our democracy and freedom. Thereby, in a

sense we are already too late with a subject – even though had we paid heed to the foresighted

theories of pioneers, we could have acted in time. This does not mean that we should give up now

and abandon implementing a subject; however, our route to taking back the power is longer than it

could have been.

I have included a survey that illustrates Danish conceptions of computational thinking. It shows that

Danish school principals emphasize and prioritize computational thinking as being important for

Bildung for life, for example “in order for children to understand and act in an increasingly digitalized

everyday life” (see Chapter 5.2) rather than just educating them for the labor market. Their

arguments illustrate the critical-constructive Bildung traditions that the school systems of Danish and

other Scandinavian countries are based on.

With regard to what, I found that today, we need to add to historical theories on what to learn – at

least when we look at specific content. Historical examples and specific whats are only stepping

stones towards teaching computational thinking today. For example, historically a committee set up

by the Danish Ministry of Education argued that students should learn about data models in our

society – which is still relevant – but many of today’s data models are quite different than they were

82

back then. For example, learning to understand traditional sequential algorithms, executed step by

step, is not enough today. Many systems are designed to ‘learn’ continuously by new input, new data.

Our input as users – our data – often determines the behavior of a system. Therefore, students also

need to learn about, for example, machine learning in order to be able to comprehend the potentials

and consequences of digital technologies today, and the way this technology is used.

Not only do students need to develop computational thinking skills. The analysis from the state-of-

the-art showed how present conceptions of computational thinking tend to refer back to Wing as

the main driver. She characterizes computational thinking in terms of abstraction, problem

decomposition, problem reformulation, automation, and systematic testing; that is, she emphasizes

mathematical concepts. Based on the present analysis from a critical-constructive Bildung

perspective, this what is too narrow. Students need to learn both computer science aspects, design

aspects, and aspects regarding technology criticism.

A broader view on what is also illustrated in the conceptions of Danish school principals in the

abovementioned survey. They think of computational thinking in more comprehensive ways than

learning specific concepts and programming. Generally, they had a high degree of agreement with

the statements presented to them which suggests inclusive views on what computational thinking

involves. They agreed the most that it involves problem-solving and critical thinking, and they agreed

least that it involves knowledge of computers and that it means the same as programming or coding.

With regard to how, through a design experiment, I found that the general and subject-specific

didactic theories from why and what were able to serve as a good fundament for how. Klafki

emphasized that Bildung encompasses learning and being confronted with things that concern us

as humans collectively, for example common key problems. In the course described, students were

confronted with the environment, focusing on climate change as a key problem (problem) that

concerns all humans (people). They were to learn a way of coming up with solutions by developing

computational thinking and design thinking competencies (tools). The course was planned,

conducted and assessed based on Naur’s model on people, problem, and tools. The aim of using his

model was for the students to consciously solve a problem that had relevance for people, to

understand and think about the tools as appropriate things for solving problems, and to use the tools

to solve problems that they actually regarded as problems.

As argued, technology comprehension encompasses both computer science aspects, design

aspects, and technology criticism aspects, and there are many other ways, more comprehensive

ways and additional ways, for students to learn competencies within these areas. The design

experiment was an example of one way, and a first step, of acting like a computational designer

83

(inspired by Denning’s term computational design). Thus, it was a possible step towards educating

students to be able to participate and demonstrate responsibility in terms of being able to design

solutions to a key problem in the world.

84

6 Conclusion

The primary purpose of this project was to examine why computational thinking is essential to teach

in compulsory education, what aspects of it are essential to teach, and, secondary, to examine how

computational thinking can be implemented in the classroom.

Theoretically, the studies were based on critical-constructive Bildung-centered didactic theories as

well as subject-specific theories and perspectives by Naur and Denning. As the subtitle of this

dissertation states, I have taken a societal and democratic perspective on computational thinking in

compulsory education. By that I mean that I have examined the field in relation to what all people

need to learn in a democratic society to be prepared and empowered to live a free life with rights

and duties – contrary to what they need to learn to be prepared for college and specific careers.

6.1 Why is computational thinking essential to teach in compulsory education, and

what aspects of it are essential to teach?

An implicit question here is if computational thinking is essential to teach in compulsory education.

By reviewing common present conceptions of computational thinking, I found that computational

thinking is today regarded as a number of concepts that are mostly related to math. In a review of

existing literature, the authors found that main articles within the field refer to Wing as the main driver

of the present computational thinking movement. In her understanding, computational thinking

involves abstraction, problem decomposition, problem reformulation, automation, and systematic

testing. They conclude that in general, the articles perceive computational thinking as something

that involves solving algorithmic problems. When I in the articles found arguments on why the

authors of these articles saw it as essential to teach computational thinking in compulsory education,

they were only weak and superficial. For example, arguments were that students will live in a world

and work in fields that are influenced by computing, and that students will need to take advantage

of the changes caused by technology, but they do not elaborate or present any analysis of why.

This does not mean that computational thinking should not be taught; rather that it involves much

more than mathematical concepts. In this dissertation, I have discussed how simply learning such

concepts from a critical-constructive Bildung perspective is not desirable. Already in the 1960s, Naur

argued that calculations were no longer the most important task for computers. Naur specifically

articulated datalogy as important in order to maintain a democracy with human rights and

possibilities, and he emphasized that experts in the field would gain power over all of us if we were

not educated to understand how computers were programmed. He stated that it would require an

understanding of computer science to be able to influence decision-making processes, and that we

85

– in a democracy – should not give up and let experts decide such important processes. Hence, he

stressed that data education needed to be implemented in the curriculum of compulsory school.

Arguments on why are today still similar to the historical ones. The analysis of present perspectives

does, however, illustrate that implementing a subject is much more urgent today. For example,

experts have now to a great extent gained the power over the system, which already now

undermines and threatens our democracy. This might be one of the major consequences of not

having implemented a subject in general education aimed at teaching all students to understand

digital technologies. Decision-makers ignored historical recommendations and warnings about the

power of ‘tech-giants’, threats to democracy and interconnected personal data that can affect our

lives in terrible ways.

A critical-constructive Bildung-centered perspective is illustrated in a survey in which Danish school

principals were asked if and why they saw computational thinking as important to teach in

compulsory education. The principals to a greater extent emphasized computational thinking skills

as being important for Bildung for life; that is, that children develop competencies to understand and

act in everyday life, rather than education (only) preparing children for the labor market. Concerning

what computational thinking involved in their view, the principals had more inclusive views. For

example, they agreed more that computational thinking involves critical thinking and problem-

solving approaches rather than agreeing on subject-specific definitions such as understanding and

developing algorithms, using computers to solve problems more easily and to work with data. In

addition, they agreed the least that computational thinking is equal to basic technical skills and

knowledge.

The historical analysis illustrated that what, in a Danish context, has been centered on learning to

understand how computers work(ed). Emphasis was on practical and application-oriented problem-

solving processes, and that students in compulsory education should not be educated for the labor

market, rather for life in a democracy. Specifically, the recommendation from a committee that

discussed and described a subject in the 1970s was that the subject area comprise the concept of

data; problem formulation and task structuring; the concept of models and model types; the concept

of algorithms; the basic structure of a computer; and data processing systems, data processing

applications, and societal aspects.

Concerning what to teach from a present perspective, there is a need to combine computer science

aspects, design aspects and technology criticism in order “to prepare the students to be able to

participate, demonstrate mutual responsibility and understand their rights and duties in a free and

democratic society”, as is stated in the formal aims of Danish compulsory education (Ministry of

86

Children and Education 2018). Therefore, I regard the present understanding from literature to be

insufficient. The computational thinking movement that originated from Wing’s essay does not take

into account the importance of teaching students design thinking as well as critical thinking about

digital technologies, and at the same time it highlights algorithms presented as step-by-step

procedures; thereby, the movement does not take into account the excessive use of machine

learning models in our society today, some of which can be solutions to key problems in the world,

and some of which pose a threat to our democracy. We should rather and in a broader sense aim

for students to develop what in a Danish context has been named technology comprehension.

6.2 How can computational thinking be implemented in the classroom?

In continuation of my conclusion above, the wording of this question should rather be how

technology comprehension can be implemented in the classroom.

With reference to Naur, learning to master individual techniques is not what students need; rather

they need to be able to skillfully apply techniques in real projects. At a visionary level, Naur

formulated a model on the relationship between people, problems, and tools in problem-solving

processes; that is, he saw problem-solving as a process with a conscious relationship between

people, problems, and tools. Exemplified by programming, programming is only a tool to solve some

problems for people, and a way of learning to use such a tool is in an authentic context.

When planning a course, teachers can maintain awareness on the relationship between problems

and people; people and tools; and tools and problems. For example, are the tools (such as

programming) used to solve problems that the students regard as problems? During their teaching,

teachers can show the students the model for them to become aware of these relations, and when

assessing their teaching, the teacher can use the model to assess whether the students understood

these relations.

 Through planning and conducting a design experiment, I have illustrated what teaching students to

deal with key problems in the world, using computational thinking, design thinking and technology

criticism as tools, could look like in practice. Because of analysis from why and what, the experiment

aimed for students to develop not only computational thinking skills, but also broader skills within

technology comprehension. There are, however, many ways of teaching technology

comprehension. This experiment is not meant to illustrate a best practice, but to illustrate one good

way of doing this.

Other historical hows, that were found to be able to serve as inspiration today are unplugged

approaches to understanding data, computers and areas of application, for example by using

flowcharts to develop algorithms to deal with problems. I have emphasized that historical unplugged

87

ways of teaching technology understanding (including computational thinking) cannot stand alone.

At some point we need to plug our ideas into the computer to understand how it works; to understand

what machines are capable of – and not capable of.

6.3 Contribution, Limitations and Future Work

When I selected to focus on the three didactic questions why, what and, secondarily, how, I

automatically deselected focusing on other didactic questions. In this paragraph, I discuss the

contribution as well as the limitations of my project.

In Chapter 2, I have discussed my didactic position as a subject-specific didactic researcher with

reference to theories by Klafki, Nielsen, Schnack, and Bundsgaard. In short, Klafki sees didactics as

not only a theoretical discipline but also as a science of practice for practice. Nielsen elaborates on

that and argues that didactics do include theory but also planning and decisions, which can be

scientifically based on scientifically oriented didactics. He distinguishes between a narrow

understanding that involves the didactic questions what, where to, why and who, and a broader

understanding that also involves how, with what, and where.

Bundsgaard argues that subject-specific didactic researchers need to examine and discuss their

subject with general reflections on the overall purpose of education. To him, subject-specific

didactics is not limited to reflections on content, as in some didactic theories. It is a much broader

discipline that involves reflections on the society and the world, the purpose of education, teaching

objectives, teaching content, methods and organizations of settings, collaboration and activities, and

evaluation. He points out that it does not make sense to reflect on only one of these aspects as if it

was autonomous. Taking into account how didactics is far from only a theoretical matter of why and

what, but in a broader sense also includes how, where to, who, with what, and where, and since all

of these aspects are interdependent and interconnected (see Figure 1), research is needed on other

didactic questions.

Bundsgaard does, however, argue that it is completely acceptable to be more interested in one

aspect than in the others. In this project, I primarily chose to focus on examining theories about why

and what. As a subject-specific didactic researcher in the scientific field of computational thinking

and technology comprehension education, I first and foremost discuss general questions about the

purpose of education with regard to what Schnack refers to as a didactic of challenges; that is,

questions about what content is important for us and the next generation in order to handle the

challenges that we face as a society and as humans. This involves reflections about society and the

world. I connected results from my sub-studies to conclude why what content is relevant in

compulsory education. Based on the literature that I reviewed as well as my theoretical didactical

88

position, the project contributes with evidence on why we need to teach computational thinking and

– in a broader sense – what in Denmark has been named technology comprehension, as well as

what aspects of computational thinking we need to teach. On that note, computational thinking as

a subject-area is, in the light of my didactic analysis too narrow to capture what students need to

learn today.

The theories from my studies on why and what can enrich practice. But in my view, it is, as Nielsen

puts it, insufficient to theorize. Therefore, I decided to plan and conduct a design experiment in

practice based on my theories (scientifically based practice), thereby connecting my results

regarding why and what with how. My examination of how includes reflections on objectives,

methods, organizations of settings, collaboration and activities, as well as evaluation. It is, however,

not an in-depth study. For example, the method was inspired by design-based research, but we did

not do iterations and improve our practice to generate new theories. In-depth studies on how are

needed, as are other approaches to teaching technology comprehension.

In addition, the field of technology comprehension is developing rapidly and constantly, and present

literature might include more in-depth arguments on why to teach what – as well as more

comprehensive views on what computational thinking in compulsory education should be about.

Moreover, the school principals who took part in the survey might feel that they have a better

understanding of why and what today.

Emphasizing the discussion on present perspectives and the analysis of the use of digital

technologies in society today, it is evident that students need not only to learn to understand

programming in terms of step-by-step algorithms and mathematical concepts, but also to

understand machine-learning models and to critically reflect on such models. Research on this area

is lacking and much needed.

89

References

AU (2018). Lov om folkeskolen, 26. juni 1975. Danmarkshistorien.dk, Aarhus Universitet.

www.danmarkshistorien.dk/leksikon-og-kilder/vis/materiale/lov-om-folkeskolen-26-juni-1975

Bang, J. Chr., Døør, J., Steffensen, S. V. & Nash, J. (2007). Language, ecology, and society: A dialectical

approach. Continuum

Barr, V. & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what

is the role of the computer science education community? ACM Inroads, 2(1): 48-54.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A. & Engelhardt, K. (2016). Developing computational

thinking in compulsory education – Implications for policy and practice. Joint Research Center,

European Commission. https://doi.org/10.2791/792158

Brennan, K. & Resnick, M. (2012). New frameworks for studying and assessing the development of

computational thinking. In Proceedings of the 2012 annual meeting of the American Educational

Research Association, Vancouver, Canada: Pp. 1-25.

Bundsgaard, J. (2005). Bidrag til danskfagets didaktik. PhD Dissertation.

CSTA & ISTE (2011). Operational Definition of Computational Thinking for K-12 Education.

https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf

Denning, P. J.; Tedre, M. & Yongpradit, P. (2017). Misconceptions about computer science.

Communications of the ACM, February 2017. https://doi.org/10.1145/3041047

Denning, P. J. (2017a). Computational Design. ACM Ubiquity. Volume 2017, August: 1-9.

https://dl.acm.org/doi/10.1145/3132087

Denning, P. J. (2017b). Viewpoint. Remaining Trouble Spots with Computational Thinking.

Communications of the ACM, 60(6): 33:39.

EMU (2021). Technology Comprehension.

https://emu.dk/grundskole/teknologiforstaaelse/technology-comprehension

EMU (2019). Teknologiforståelse. https://www.emu.dk/grundskole/forsogsfag-

teknologiforstaelse/formal. Børne- og Undervisningsministeriet.

Fischer, C.; Frøkjær, E. & Gedsø, L. (1792a). Datalære i skolen. Om data og edb i samfundet. Textbook.

Gads Forlag.

Fischer, C.; Frøkjær, E. & Gedsø, L. (1792b). Datalære i skolen. Om data og edb i samfundet. Teacher’s

Resource. Gads Forlag.

http://www.danmarkshistorien.dk/leksikon-og-kilder/vis/materiale/lov-om-folkeskolen-26-juni-1975
https://doi.org/10.2791/792158
https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf
https://doi.org/10.1145/3041047
https://dl.acm.org/doi/10.1145/3132087
https://emu.dk/grundskole/teknologiforstaaelse/technology-comprehension
https://www.emu.dk/grundskole/forsogsfag-teknologiforstaelse/formal
https://www.emu.dk/grundskole/forsogsfag-teknologiforstaelse/formal

90

Frandsen, K. (1983) (ed.). EDB i skolens undervisning. Danmarks Skolelederforening.

Gundem, B. B. & Hopmann, S. (2002). Didaktik and/or Curriculum: An International Dialogue. Peter

Lang.

ISTE (2014). Computational Thinking for All. https://www.iste.org/explore/Solutions/Computational-

thinking-for-all

ISTE (2016). ISTE Standards: Students. https://www.iste.org/standards/iste-standards-for-students

Katapult/TEACH (2013). Værktøjskassen: Model for designtænkning. Projektet Next Generation.

Københavns Universitet. https://innovation.sites.ku.dk/model/design-thinking

Klafki, W. (2016). Dannelsesteori og didaktik – nye studier. 3. ed. Forlaget Klim.

Ministry of Children and Education (2018). The Aims of the Folkeskole. https://eng.uvm.dk/primary-

and-lower-secondary-education/the-folkeskole/the-aims-of-the-folkeskole

Moreno-León, J., Robles, G. & Román-González, M. (2015). Dr. Scratch: Automatic analysis of scratch

projects to assess and foster computational thinking. RED. Revista de Educación a Distancia, (46):

1-23.

Naur, P. (2005). Computing Versus Human Thinking. ACM Turing Award Lecture Video. ACM.

https://amturing.acm.org/vp/naur_1024454.cfm

Naur, P. (1966a). Datalogi og datamatik og deres placering i uddannelsen. Magisterbladet, May 15,

1966.

Naur, P. (1967). Datamaskinerne og samfundet. Søndagsuniversitetet – Bind 85. Munksgaard.

Naur, P. (1968). Demokrati i datamatiseringens tidsalder. Kriterium, 3. årg., nr. 5, June, 1968. Nyt

Nordisk Forlag Arnold Busck.

Naur, P. (1966b). Plan for et kursus i datalogi og datamatik. Regnecentralen.

Naur, P. (1970). Project activity in computer science education. Calcolo, 7(1).

https://doi.org/10.1007/BF02575555

Naur, P. (1965). The Place of Programming in a World of Problems, Tools, and People. Proc. IFIP

Congress, 65: 165-199.

NGSS (2013). Next Generation Science Standards. For States, By States. National Academies Press.

Nielsen, F. V. (1998). Almen Musikdidaktik. 2. ed. Akademisk Forlag.

https://www.iste.org/explore/Solutions/Computational-thinking-for-all
https://www.iste.org/explore/Solutions/Computational-thinking-for-all
https://www.iste.org/standards/iste-standards-for-students
https://innovation.sites.ku.dk/model/design-thinking
https://eng.uvm.dk/primary-and-lower-secondary-education/the-folkeskole/the-aims-of-the-folkeskole
https://eng.uvm.dk/primary-and-lower-secondary-education/the-folkeskole/the-aims-of-the-folkeskole
https://amturing.acm.org/vp/naur_1024454.cfm
https://doi.org/10.1007/BF02575555

91

Palts, T. & Pedaste, M. (2020). A Model for Developing Computational Thinking Skills. Informatics in

Education, (19)1: 113-128. https://doi.org/10.15388/infedu.2020.06

Selby, C. & Woollard, J. (2013). Computational thinking: the developing definition. Monograph

(Project Report). https://eprints.soton.ac.uk/356481/

Smith, R.C.; Bossen, C.; Dindler, C. & Iversen, O.S. (2020). When Participatory Design Becomes Policy:

Technology Comprehension in Danish Education. Proceedings of the 16th Participatory Design

Conference 2020 : 148-158. ACM.

Sveinsdottir, E. & Frøkjær, E. (1988). Datalogy – The copenhagen tradition of computer science. BIT

Numerical Mathematics, 28(3), 450-472. https://doi.org/10.1007/BF01941128

Tedre, M. & Denning, P. J. (2016). The long quest for computational thinking. Proceedings of the 16th

Koli Calling Conference on Computing Education Research, November 24-27, 2016, Koli, Finland:

120-129. https://doi.org/10.1145/2999541.2999542

Undervisningsministeriet (1972). Betænkning om edb-undervisning i det offentlige

uddannelsessystem. Betænkning nr. 666. Undervisningsministeriet.

Undervisningsministeriet (2019). Historie. Faghæfte 2019. Undervisningsministeriet.

https://emu.dk/sites/default/files/2020-09/Gsk_fagh%C3%A6fte_historie.pdf

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2011). Research notebook: Computational thinking – What and why. The Link Magazine:

20-23.

All links have been checked on November 29, 2021.

https://doi.org/10.15388/infedu.2020.06
https://eprints.soton.ac.uk/356481/
https://doi.org/10.1007/BF01941128
https://doi.org/10.1145/2999541.2999542
https://emu.dk/sites/default/files/2020-09/Gsk_fagh%C3%A6fte_historie.pdf
https://doi.org/10.1145/1118178.1118215

92

Danish Summary

Gennem det seneste årti har interessen for datalogisk tænkning (computational thinking) i

obligatorisk uddannelse (folkeskolen) været stigende. Fagområdet implementeres i læreplaner

rundt om i verden, i takt med at vores samfund bliver mere og mere digitaliseret. Datalogisk tænkning

ser altså ud til at blive betragtet som en grundlæggende almen kompetence i elevers nuværende

og fremtidige liv.

I forlængelse af denne udvikling har formålet med dette forskningsprojekt været at undersøge

årsagerne til, hvorfor (og om) datalogisk tænkning er en central kompetence at udvikle i obligatorisk

uddannelse, og hvad det er vigtigt at undervise i.

Projektet var primært centreret om følgende forskningsspørgsmål: Hvorfor er det essentielt at

undervise i datalogisk tænkning i obligatorisk uddannelse, og hvad er det essentielt at undervise i?

Derudover ønskede jeg at undersøge, hvordan undervisning kunne se ud i praksis, baseret på

svarene fra mine primære forskningsspørgsmål. Derfor var mit sekundære forskningsspørgsmål:

Hvordan kan datalogisk tænkning implementeres i undervisningen?

Metodisk set er dette et didaktisk forskningsprojekt baseret på kritisk-konstruktiv dannelsescentreret

teori. Forståelsen er, at obligatorisk uddannelse bør sigte mod, at eleverne udvikler almene

kompetencer, der forbereder dem til livet i et frit og demokratisk samfund med rettigheder og ansvar.

Obligatorisk uddannelse skal altså ikke sigte mod udvikling af specifikke erhvervskompetencer, i

dette tilfælde inden for datalogi.

Selvom der undervises i datalogisk tænkning, var det min hypotese, at argumenter for, hvorfor det er

vigtigt at undervise i det i obligatorisk uddannelse, ofte enten mangler eller kun er overfladisk

beskrevet i litteraturen på området. Denne hypotese var foranlediget af professor Peter J. Denning,

der i et essay (2017b) blandt andet diskuterede, at der i dag er i tvivl om, hvad datalogisk tænkning

er, og om det er en kompetence for alle – altså om datalogisk tænkning er en almendannende

kompetence. Ligeledes diskuterede han, at der er tvivl om, hvad datalogisk tænkning indebærer.

Han påpegede, at den nuværende nye forståelse af datalogisk tænkning er fattigere og mere

snæver end en historisk forståelse af feltet, og han mener derfor, at man som forsker på området bør

bygge oven på det fundament, som allerede er lagt historisk set og dermed skabe fremskridt – frem

for tilbageskridt ved at starte forfra uden historisk indsigt.

I forhold til min teoretiske position og forståelse er hvorfor et af de vigtigste spørgsmål at kunne

besvare. Det påvirker i høj grad, hvad vi underviser i, og hvordan vi bedst underviser i det. Derfor

anser jeg det for centralt at være i stand til at argumentere for at kunne svare på, hvad der er det

93

væsentlige at undervise i, samt for kunne gøre sig refleksioner over hvordan man bedst underviser i

det.

Jeg har undersøgt hvorfor, hvad og hvordan fra tre perspektiver: litteratur (state-of-the-art), historiske

perspektiver og nuværende perspektiver.

Gennem et systematisk review og analyser af litteratur på området blev jeg bekræftet i, at

argumenter for, hvorfor alle skal undervises i datalogisk tænkning i obligatorisk uddannelse, enten

manglede eller var overfladisk formuleret. Derudover fandt jeg ud af, at datalogisk tænkning i nyere

tid internationalt anses som overvejende matematiske problemløsningsstrategier, for eksempel

abstraktion, nedbrydning af problemer i enkeltdele og automatisering.

I mine historiske analyser fokuserede jeg overvejende på dansk historie inden for området, da dansk

obligatorisk uddannelse (folkeskolen) i overensstemmelse med min teoretiske position har tradition

for at være dannelsesorienteret frem for erhvervsrettet. Her fandt jeg ud af, at der siden 1960’erne

har været diskuteret et fag, der godt nok indeholdt elementer af det, der i en snæver forståelse i dag

kaldes datalogisk tænkning, men som var langt bredere. Særligt professor Peter Naur

argumenterede for, at alle i et samfund præget af digitalisering bør lære datalogi som et væsentligt

tværfagligt værktøj på samme måde, som alle lærer at beherske andre væsentlige værktøjer,

særligt sproget (herunder læsning og skrivning) samt matematik. Naur havde et samfundsmæssigt

og demokratisk perspektiv på almen uddannelse, og således ønskede han netop ikke at indføre et

fag med henblik på, at alle skulle blive dataloger, men med henblik på, at alle lærte at forstå data,

deres natur og brug – herunder hvordan computere er programmeret. I modsat fald var han af den

overbevisning, at eksperter på feltet ville få magten og altså bestemme samfundsretningen, hvilket

ville afvikle demokratiet.

I halen af Naurs argumenter blev faget datalære formuleret i 1970’erne. Et udvalg nedsat af

Undervisningsministeriet beskrev i en betænkning, hvad faget skulle indeholde, og af deres arbejde

ses det, at matematisk problemløsning blev anset som utilstrækkelig. Historisk var der således et

bredere fokus på blandt andet anvendelse af databehandling samt samfundsmæssige aspekter.

Der var fokus på, at man forstod, hvad en computer var, og hvordan den kunne programmeres.

Computere var dengang meget simplere, end hvad det er tilfældet i dag. I dag er brugerflader

designet så intuitive, at det kan virke ligegyldigt at sætte sig ind i, hvordan de egentlig virker. Det kan

også virke ligegyldigt at kigge på simple historiske eksempler på undervisning i datalære, eftersom

udviklingen på det digitale området har været enorm siden dengang. I denne afhandling diskuterer

jeg, at det netop er en af historiens styrker på den måde, at sådanne simple eksempler kan fremme

forståelsen for, hvordan computere rent basalt virker, og hvad de egentlig kan (og ikke kan).

94

Samtidig kommer jeg frem til, at hverken historiske perspektiver på hvorfor, hvad eller hvordan er

tilstrækkeligt i et nutidigt og fremtidigt samfund. Nutidige analyser bør supplere. I et nutidigt

perspektiv diskuterer jeg således, at Naurs argumenter samt indholdsbeskrivelsen af faget datalære

grundlæggende stadig er gyldigt – delvist på grund af hans fremsynethed om fremtidig brug af

computere samt eksperternes magt. Men det faktum, at samfundet har ændret sig drastisk inden for

digitalisering siden 1970’erne, gør, at det ikke er samme specifikke argumenter (hvorfor). Der er ikke

samme brug af computere samt muligheder og konsekvenser ved digitalisering i dag som dengang.

Det er heller ikke samme specifikke indhold (hvad), der bør undervises i. I dag gør mange

computerprogrammer for eksempel brug af maskinlæringsmodeller med dynamiske algoritmer,

hvor datamodeller historisk set var noget simplere. Endelig bør undervisning heller ikke foregå

fuldstændig (hvordan) som historisk set. For eksempel har vi i dag i langt højere grad digitalt udstyr

og programmer til rådighed, ligesom ændringerne af hvorfor og hvad også ændrer hvordan. Jeg

eksemplificerer med et specifikt undervisningseksempel, hvor jeg i samarbejde med en datalog har

planlagt og gennemført et designeksperiment i en 8. klasse, hvor eleverne skulle designe en

prototype på samt programmere et produkt, der kunne minimere energiforbrug.

Samlet set argumenterer jeg i denne afhandling for, at historiens diskussioner kan fungere som et

godt fundament for nutidige teorier inden for og refleksioner over de didaktiske spørgsmål hvorfor,

hvad og hvordan. Jeg konkluderer, at det ikke er datalogisk tænkning i den snævre gængse

matematisk forståelse, der er brug for i almen uddannelse, men et bredere sammenhængende fag,

i Danmark kaldet teknologiforståelse, der både fokuserer på udvikling af datalogiske kompetencer,

designkompetencer samt teknologikritiske kompetencer.

95

Appendix: Articles A-E

This appendix includes a collection of the five academic articles A-E that along with the overview

article (chapters 1-6) constitute my dissertation. All articles have been published in peer-reviewed

national or international journals in 2019 and 2020.

Article A: Caeli, E. N. & Yadav, A. (2019). Unplugged Approaches to Computational Thinking: a

Historical Perspective. TechTrends. AECT, Springer. https://doi.org/10.1007/s11528-019-00410-5

Article B: Caeli, E. N. & Bundsgaard, J. (2019a). Computational Thinking and Technology

Comprehension in K-9 schools: A Round Trip.

Translated from:

Caeli, E. N. & Bundsgaard, J. (2019). Datalogisk tænkning og teknologiforståelse i folkeskolen tur-

retur. Læring og Medier (LOM), 11(19). https://doi.org/10.7146/lom.v11i19.110919

Article C: Caeli, E. N. & Bundsgaard, J. (2020). Technology Criticism in Schools – a Democratic

Perspective on Technology Comprehension.

Translated from:

Caeli, E. N. & Bundsgaard, J. (2020). Teknologikritik i skolen – et demokratisk perspektiv på

teknologiforståelse. In Haas, C. & Matthiesen, C. (Eds.): Fagdidaktik og demokrati.

Samfundslitteratur.

Article D: Caeli, E. N. & Bundsgaard, J. (2019b). Computational thinking in compulsory education:

a survey study on initiatives and conceptions. Educational Technology Research and

Development. AECT, Springer. https://doi.org/10.1007/s11423-019-09694-z

Article E: Caeli, E. N. & Dybdal, M. (2020). Technology Comprehension in Schools. Computational

Design for Solving Authentic Problems.

Translated from:

Caeli, E. N. & Dybdal, M. (2020). Teknologiforståelse i skolens praksis. Datalogisk design til autentisk

problemløsning. Læring og Medier (LOM), 12(22). https://doi.org/10.7146/lom.v12i22.115613

Two articles have been published in English (A and D), whereas three articles (B, C and E) were

originally published in Danish. The three Danish articles have been translated into English for this

dissertation.

https://doi.org/10.1007/s11528-019-00410-5
https://doi.org/10.7146/lom.v11i19.110919
https://doi.org/10.1007/s11423-019-09694-z
https://doi.org/10.7146/lom.v12i22.115613

ORIGINAL PAPER

Unplugged Approaches to Computational Thinking:
a Historical Perspective

Elisa Nadire Caeli1 & Aman Yadav2

Association for Educational Communications & Technology 2019

Abstract
In the recent years, there has been a push to engage primary and secondary students in computer science to prepare them to live
and work in a world influenced by computation. One of the efforts involves getting primary and secondary students to think
computationally by introducing computational ideas such as, algorithms and abstraction. Majority of this work around compu-
tational thinking has focused on the use of digital technologies, in particular programming environments (Yadav, Stephenson, and
Hong 2017). In today’s highly digitalized world, we often associate computational problem-solving processes with the use of
computers. Yet, solving problems computationally by designing solutions and processing data is not a digital skill, rather a mental
skill. Humans have solved problems for eons and before anyone even thought about the types of digital technologies and devices
we know today. The purpose of this article is to examine the historical route of computational thinking and how history can
inspire and inform initiatives today.We introduce how computational thinking skills are rooted in non-digital (unplugged) human
approaches to problem solving, and discuss how mainstream focus changed to digital (plugged) computer approaches, particu-
larly on programming. In addition, we connect past research with current work in computer science education to argue that
computational thinking skills and computing principles need to be taught in both unplugged and plugged ways for learners to
develop deeper understanding of computational thinking ideas and their relevance in today’s society.

Keywords Computational Thinking Unplugged . Problem-Solving . Primary and Secondary Education . Datalogy . Algorithms

Historical discussions on computers
in education

The need of computer science in primary and secondary class-
rooms has been discussed by computer pioneers worldwide
for around 60 years. At a conference in 1960, computer sci-
ence professor Alan Perlis suggested that students should be
taught to understand computers as general tools for problem
solving rather than specific tools to solve specific problems
(Katz 1960). Though Perlis was discussing this issue with

undergraduate students in mind, he argued that designing al-
gorithms to solve problems involved basic thought processes
that everyone should eventually learn. However, as Katz
(1960) pointed out “ the pedagogy for computers had not yet
been developed properly” and was a barrier to implement
these ideas in formal schooling. MIT Professor, Peter Elias
also suggested that humans should generally understand algo-
rithms, but that it did not necessarily need to involve a com-
puter and that everyone did not need to go into details on how
a computer worked, stating: “I think it is quite possible to
justify learning these topics, computer or no computer. That
is, I don’t think this is a matter of matching people to ma-
chines. I think it is simply a matter of being able to talk intel-
ligently about a class of interesting problems that we have
discovered” (as cited in Greenberger 1962, p. 202).

Around that same time, a Danish computer science profes-
sor, Peter Naur, argued that children should learn datalogy
(Danish translation of computer science) as part of their gen-
eral education. He invented this term as a protest to computer
science to stress that computer science is not only the science
of computations, rather of all types of data and data processes,

* Elisa Nadire Caeli
elisa@edu.au.dk

Aman Yadav
ayadav@msu.edu

1 Danish School of Education, Aarhus University, Tuborgvej 164,
2400 Copenhagen NV, Denmark

2 College of Education, Michigan State University, Erickson Hall, 620
Farm Lane, East Lansing, MI 48824, USA

TechTrends
https://doi.org/10.1007/s11528-019-00410-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s11528-019-00410-5&domain=pdf
http://orcid.org/0000-0002-1233-7589
mailto:elisa@edu.au.dk

and to move the focus away from computers as being central
to this endeavor. Datalogy has a human aspect, he explained;
and, data is a matter of human understanding (Naur 1966,
2005). Specifically, Naur argued that fundamental principles
of datalogy should play a role in children’s education stating,
“All of us have had to learn a considerable amount of lan-
guages, arithmetic and mathematics in school, without many
of us subsequently becoming linguists or mathematicians. In
the same way we must bring computer science into the school
and prepare ourselves for life in the era of the computers, just
as reading and writing are regarded as necessary prerequisites
for life in a society characterized by the printed word” (as cited
in Sveinsdottir & Frøkjær 1988, p. 456–7). Hence, Naur saw
datalogy as a cross-curricular problem-solving skill at the
same levels as mathematics and language learning; but he
acknowledged that while it might take decades to implement
the necessary changes given the structural issues within edu-
cational systems, key stakeholders would eventually come to
understand the need for such subject (Naur 1966, p. 7).

In addition, Naur underlined that people’s understanding
and formulation of problems are related to the tools they have
at their disposal and that solving problems involves an under-
standing of those tools. He considered the relation between
tools, problems, and people as a unified whole as illustrated in
Fig. 1. He explained that problems exist only if someone come
to think of them as problems – i.e., they only exist in the mind
of people. In the same way, tools only become tools when
someone thinks of them as things to solve some problems
with. “The problem and the tool”, he said, “is nothing if they
are not recognized as such by a person” (Naur 1965).

Naur argued that characteristics of tools to solve problems,
for good (and bad) shape the thinking of people and their
conception of problems; therefore, problem-solving requires
an understanding of tools (Naur 1965; Sveinsdottir & Frøkjær
1988, p. 463). He saw programming as a tool that can influ-
ence students’ thinking in ways where they see problems and
possible solutions based from a tool’s perspective and what
that specific tool is capable of, and he asserted that a deep
understanding of programming and its capabilities is a precur-
sor to developing programming skills. Thus, programming as
a tool, problems, and people are interconnected to form key

elements in computational problem-solving. This means that
teaching programming from a specific tool’s perspective, for
example “learning Scratch” or “learning Python” with closed-
ended solutions, does not alone develop deep understanding
and wicked problem-solving skills. Teachers should engage
students in learning to program by focusing on relevant prob-
lems that students could solve using programming as a tool
when planning, conducting and assessing a broad and inclu-
sive computer science education.

Understanding and Design of Algorithms

While programming can be an important tool for solving prob-
lems, discussions on how computer science should be taught
have been going on since the 1960s, with some arguing for
everyone to learn programming while others arguing for under-
standing the concepts and expressing algorithms as being the
most important part (Malmberg 1970; Katz 1960; Greenberger
1962; Naur 1966). For example, in 1972 the DanishMinistry of
Education proposed a new datalogy subject for primary and
lower secondary school students stressing that this subject had
the ability to foster creativity and imagination since solutions of
problems have many different forms. However, they addressed
the need to engage students’ in problem-solving activities that
go beyond specific forms tied to programming, which are not
generally applicable. (Undervisningsministeriet 1972). The in-
tention was not to develop programming skills, rather to under-
stand how to design algorithms as an iterative process. The
argument against programming languages leading the learning
process was that the formal and technical details of program-
ming could possibly hinder understanding of designing algo-
rithms. The alternative approach was using a tool, such as a
flowchart, that was not restrained by formal structures and de-
tails and allowed the ability to communicate solutions as algo-
rithms. Some have even argued that programming skills are not
the most interesting part of problem-solving processes rather it
was designing and expressing algorithms as Malmberg (1970)
argued, “the actual – and often highly demanding – task is
preparing the algorithm” (p. 274). He emphasized the impor-
tance of learning how to design and express algorithms in ways
that a machine would be able to understand.

Similar, Knuth (1974) argued that learning computer sci-
ence concepts have “educational side-effects” and described
computer science concepts as general-purpose mental tools
that develop deeper understanding in other subject areas. He
argued that being able to express something as an algorithm
prepares a person for much more than the formal act of pro-
gramming, stating, “a person well-trained in computer science
knows how to deal with algorithms: how to construct them,
manipulate them, understand them, analyze them” (p. 326).
Knuth further pointed out that computer machines and algo-
rithms do not only compute with numbers, but “with

Fig. 1 The fundamental components in problem solving according to
Naur (1965)

TechTrends

information of any kind, once it is represented in a precise
way” (Knuth, p. 323); thus, he liked how Naur’s Danish term
datalogy indicated that computer science deals with more than
solutions to numerical equations.

During the 1980s, when computers started to enter schools
and computer usage grew, there was still no pedagogy for using
computers, which made educators anxious and uncertain as Pea
and Kurland (1984) pointed out, stating, “Now that this admit-
tedly powerful symbolic device is in our schools, what should
we do with it?” (p. 137). Seymour Papert was one of the pio-
neers, who had a far-reaching influence on possibilities of how
computers could be used in schools in powerful ways by having
children program the computer rather than the computer pro-
gramming the children (Papert 1980).

A Constructionist Approach to Learning
to Think Computationally

Papert described what he called a schizophrenic split between
“humanities” and “science” built into our language, world-
view, and educational systems. He suggested that the comput-
er could help break down the line between these cultures by
bringing children into a more humanistic and humane rela-
tionship with mathematical ideas. In 1980, he introduced the
first programming language for children, LOGO, to bridge
this gap and provide an environment for children to commu-
nicate with computers (Papert 1980).

Papert’s approach to learning were highly influenced by
Jean Piaget, who throughout his career emphasized the impor-
tance of children’s ability to reflect on their own thinking as
“builders of their own intellectual structures” (Papert 1980, p.
7). Papert (1993) stated that while many “computer-aided in-
structions” at the time were designed for computers to pro-
gram the child, LOGO could support development of new
ways of thinking and learning. In particular, he stressed that
the relationship between the child and computer when using
LOGO was different as “the child programs the computer”
(Papert 1980, p. 5). LOGO was designed as a tool to allow
children to build intellectual structures and prepare them for a
future where computers would become a significant part of
their lives.

While Wing (2006, 2010) popularized the term computa-
tional thinking, Papert (1980) had already introduced the idea
when discussing computational environments for children,
which he found were too weak at that time. He asserted that
the vision of these environments on “how to integrate compu-
tational thinking into everyday life was insufficiently
developed...but there will be more tries, and more and more.
And eventually, somewhere, all the pieces will come together
and it will ‘catch’” (Papert 1980, p. 182). The idea computa-
tional thinking might even have been proposed before Papert
when Naur (1970) used the Danish version of the term

computational thinking (datalogisk tænkning) to describe
analysis of data representations, data processing, data medias,
etc.

During this period, researchers were also examining wheth-
er learning to program led to the development of general
higher mental functions (Pea & Kurland 1984). Pea and
Kurland argued that claims for the cognitive benefits of pro-
gramming were not supported by empirical evidence even
though their presumed validity influenced decisions in public
education. With this climate of uncritical optimism about
computer science, they saw a risk of having naive “techno-
romantic” ideas embedded in the curriculum that were not
supported by empirical evidence .

With the recent interest in bringing coding to primary and
secondary education, we need to ask ourselves: How do we
know that specific digital technologies and programming can
enhance learning? What are cognitive benefits of learning to
program and how do students transfer and apply skills from
learning to program to other areas? If the goal of computational
thinking is to expose students to skills specific to computer
science ideas, do we need programming environments? And
could we engage students in those skills using unplugged ap-
proaches? How do students transfer learning from unplugged
environments to plugged environment? In the following sec-
tion, we look at examples of unplugged approaches to teaching
computer science to examine some of these questions.

Unplugged Approaches to Computer Science

Understanding Fundamental Principles

Based on arguments laid out by Naur and other early
computer science pioneers, we believe that in order for
learners to conceptually understand computer science ideas
and practices, we need to add or even begin with unplugged
approaches. Since Wing (2006) reintroduced computational
thinking as a cross curricular twenty-first century skill, the
idea of getting children to think computationally rather than
just learning to program has been discussed widely (Yadav
et al. 2016). Countries worldwide are launching reforms or
arguing for the need to include the integration of computation-
al thinking into compulsory education (Bocconi et al. 2016;
ISTE 2016; NGSS 2013).

Wing argued that “computational thinking builds on the
power and limits of computing processes, whether they are
executed by a human or by a machine” (p. 33). Along the
same lines, Weizenbaum (1976) argued that human abilities
are more important and a computer is not indispensable or a
prerequisite to solve managerial, technological, or scientific
problems. Rather, computers provide processing power for
tasks that would otherwise take too long to be completed by
humans (Fischer et al. 1972). To add to this viewpoint, Naur

TechTrends

(1954) argued that the machine lacks both initiative and orig-
inality as it executes only mechanical processes that a human
brain has planned for it.

To illustrate how Naur saw humans using tools (such, as
programming) available to them when solving problems and
that computational tools can be both plugged or unplugged,
consider this example. If a person has 400 dollars at their
disposal for food and drinks for a birthday party, and they
want to get the most out of their money, they could go from
one store to another and calculate prices with a pen and paper
or with a calculator, they could search the internet for sales and
create a spreadsheet for automating calculating and compari-
son processes, they could use an already automated spread-
sheet, and so on. However, they would need an understanding
of how spreadsheets work in order to adapt it to his needs.
This is a simple example of identifying and solving a simple
problem; yet, it illustrates the central position of humans and
the objective position of tools.

Another example is NASA’s transition from “human com-
puters” to “automatic computers” that illustrates how computers
simply execute computing processes made by humans. Until
1962, humans did the calculations and trajectory analysis of
spaceflights, using other tools than programming. For example,
a pioneer in that field, Katherine Johnson, worked as a “human
computer” with equations that would control the trajectories by
hand, on her desktop mechanical calculating machine (NASA
2018) – equations, which were later programmed into a com-
puter. What happens in the computer is not magic. The comput-
er simply runs programs, designed by human brains.

Thus, human creativity and innovation is at the center and
computing tools serve an ancillary role. While plugged tools
play an important role in today’s highly digitized world and
have remarkably expanded and enriched our toolboxes, we
need to examine how unplugged activities support plugged
activities given that humans are central in computing. To fos-
ter innovation and open solutions, mental human skills and
understanding of the underlying principles of computing are
required. Thereby, we argue that we need to combine un-
plugged and plugged approaches to engage students in com-
puter science ideas.

Thinking and Designing before Writing the Code

Today, there seems to be a growing interest in examining
unplugged approaches to computer science education. For
example, computer scientist and founder of csunplugged.
com, Tim Bell has asserted that computational thinking is
more about humans than computers (Bell & Roberts 2016).
Bell suggested that computational thinking is a useful toolkit
in the process of problem-solving rather than a product and it
can be applied to all sorts of situations, not necessarily involv-
ing a computer. One needs to start with good computational

thinking before programming. But what does unplugged look
like in action? History provides some suggestions.

Examples of Unplugged Approaches

Using computers in the classroom have been explored for
around 50 years. Back then, computer science in education
was approached in unplugged ways and there was a visible
need to understand how computers worked. One reason for
understanding how computers workedwas because there were
no user-friendly interfaces. As an example, Danish schools
implemented datalogy activities in primary and secondary ed-
ucation many of which did not involve the machine. Figure 2
shows an example of students designing a computer with
matchboxes to understand how a computer was actually built
and how different parts of it worked, e.g. how programs were
expressed as algorithms.

In general, Denmark implemented and experimentedwith a
number of visionary datalogy initiatives in primary and lower
secondary school already in the 1970s and 1980s even before
computers were common in the classroom. They foresaw the
risk of tech-giants shaping our future in non-democratic ways
and wanted children to understand how these new automatic
machines worked to prepare all humans to participate in shap-
ing the world (for example Naur 1968). One example of this
was datalogy being implemented into Language Arts and
Mathematics for Grade 5–6 students in four different topics:
The newspaper, Communication, The Shop, and The
Travelling Agency (Holt 1988). For example, the Travelling
Agency project was aimed to develop skills on how to use
databases. The students visited Travelling Agencies and built
a travelling catalogue – first manually and later using a com-
puter. Fictitious families could order their travels both manu-
ally and with the use of a computer. The projects were used to
engage students in problem identification and design of

Fig. 2 Danish Grade 5 students building a model of a computer out of
matchboxes to understand the different parts and their functions
(Frandsen 1983). Photo: Dansk Skolelederforening

TechTrends

http://csunplugged.com
http://csunplugged.com

algorithms and solutions as their starting points rather than
focusing on writing programs.

Today the prevalence of digital devices and user-friendly
interfaces are so intuitive that we might not feel the need to look
“under the hood” and understand how computing tools work.
However, today it is more important than ever to understand
how digital technologies work in order to understand how our
data is collected with every single click we make and step we
take and used by companies to deliver and even manipulate our
online experiences. A better understanding of digital tools
would also allow us to participate in designing our world by
solving today’s and tomorrow’s problems. We must teach kids
to learn to think computationally in creative and open-ended
ways and not just to follow closed-ended instructions.

In a students’ book on datalogy, Fischer et al. (1972) fo-
cused on teaching children a basic understanding of computer
science concepts using unplugged tasks, in particular getting
them to understand what data and data processes are (and are
not) and what automation means. For instance, the authors
suggested that the students work with the concept of data by
thinking of any kind of item or product (for instance, an apple)
and suggesting the data describing that product. They sug-
gested to discuss how data processing works – for instance,
how we can transform written text (old data representation)
into sound (new data representation) by reading out loud – to
get a better fundamental understanding of how data can be
represented in different ways. The authors also provided ex-
amples on how many of the things we do in our daily life are
data processes. For instance, when crossing a street with a
traffic light, we process data in our mind:

1. We look at the color of the light. Data (the color) is rep-
resented in a way that our brains can directly work with.

2. In our minds, we compare the color of the light with the
knowledge we already have about what these colors
mean, that is: Red means “wait” and green means “walk”.

3. The result of our comparison quickly transforms into new
data in our minds that contain information on whether to
walk or wait (Fischer et al. 1972, p. 15).

Old data transforms into new data (new information) when
we add meaning to it. The fact that this is new data, might be
easier to understand by imagining ourselves writing the results
on a piece of paper (e.g. “wait” or “walk”), the authors ex-
plained. Such daily life examples can help students understand
the nature of data and how humans process data automatically
all the time.

If we want to express the traffic light data process as an
algorithm, we could write a flowchart, see Fig. 3. Fischer et al.
(1972) explained how this example transforms into many oth-
er actions, such as counting our money before buying a new
bike or the way engineers calculate on the weight of things
that are going to cross a bridge before building the bridge.

This shows the role of designing algorithms that can be used
to plan and test solutions to problems, which can then be
automated by machines.

This example illustrates how data processing is indepen-
dent of computers. In reality, however, when we solve big
scale problems – such as data analysis of trajectories for space-
flights as illustrated above – we often deal with an amount of
data and computations that are so difficult that computers are
useful or even needed in order to solve the problem efficiently
and in time. That is one of the reasons why we need to engage
learners in plugged computational activities and unplugged
should only be first step to develop deeper understanding of
data and data processing and to showcase the important role
humans play in the problem-solving process.

In summary, before engaging students in learning how to
program, it is important for them to learn how to decompose
problems into smaller moremanageable parts (decomposition)
and designing precise steps to solve those problems
(algorithms), and then representing the solutions into code
that can be automated by the computer. It is humans that solve
problems, not code or computer, which are just tools at our
disposal.

Evidence is also starting to emerge that unplugged ap-
proach can be effective in developing computational thinking
skills and helping students translate those skills into coding.
For example, a recent study compared plugged approaches to
unplugged when students learned programming (Hermans
and Aivaloglou 2017). The controlled experimental study in-
cluded 35 elementary school children with half of them re-
ceiving plugged lessons first and the other half unplugged
lessons first lasting four weeks. Afterwards both groups re-
ceived plugged lessons using Scratch lasting four weeks.
Results from this study suggested that after eight weeks there
were no difference in how the two groups mastered concepts
of programming; however, the unplugged group was more
confident in understanding these concepts and used a wider
selection of Scratch-blocks. Similarly, another quasi-
experiment on plugged versus unplugged approaches to com-
putational thinking in primary school, measured computation-
al thinking skills of grade 5–6 students (N = 73) defined as
decomposition, pattern recognition, abstraction and algorith-
mic design (Brackmann et al. 2017). Results from this study
suggested that students, who participated in unplugged activ-
ities, increased those specific skills more than the students in
the control groups who did not take part in these activities.

Combining Unplugged and Plugged Approaches

Today, a number of lessons on unplugged activities are also
starting to emerge. For example, CS Unplugged provides “a
collection of free learning activities that teach Computer
Science through engaging games and puzzles” (CS
Unplugged 2019) and Code.org compiled “a list of all of our

TechTrends

unplugged lessons for you to use in your classroom”. These
activities can “either be used alone or with other computer
science lessons on related concepts” (code.org 2019).
However, though we applaud such initiatives, there is a risk
that if we teach concepts as stand-alone and out of context, they
do not transfer into real situations and authentic problem
solving.

Moreover, one cannot understand the potential of compu-
tational thinking using only unplugged approaches. To gain an
understanding of automation processes and what computers
are capable of as tools, students need to work with plugged
approaches as well. Eventually, we need to implement the
algorithms with a machine to test our computational ideas
and solutions. Professor Peter J. Denning points this out by
stating that, “an algorithm is not any sequence of steps, but a
series of steps that control some abstract machine or compu-
tational model without requiring human judgment” (Denning
2017). The new movement with computational thinking, he
says, makes fuzzy and overreaching claims by presenting al-
gorithms as any sequence of steps, such as the procedures we
follow in our daily life. This aligns with our previous discus-
sion: When learning about the nature and use of algorithms, it
is key that they are designed in such precise ways that a ma-
chine can understand. Daily life examples, like backpack

packing, tying shoelaces, or baking cakes, might be useful to
illustrate and connect the idea of algorithms with well-known
activities – but they should not stand alone.

As we bring unplugged and plugged approached to com-
putational thinking in primary and secondary classrooms and
create curricula that leverages both to develop students’ ca-
pacity to use computing tools to solve problems and enhance
creativity, we need teachers who think computationally and
are prepared to embed computational thinking ideas into their
classrooms.

Educating teachers to teach computer science concepts has
also been discussed since early 1970s. For example,
Malmberg (1970) argued that lack of preparing teachers
trained in datalogy remained a choke point to embed it in
the primary and secondary education. Even back then, re-
searchers argued for the need for computer scientists and ed-
ucators to work together to bring relevant topics and terminol-
ogy into primary and secondary classrooms (Naur 1966) giv-
en that teachers (rather than computers) are the ones that teach
programming (Pea & Kurland 1984).

Even today, there is a problem of qualified teachers, who
are prepared to teach computer science concepts. For example,
CSTA (2013) report that computer science teacher certifica-
tion in the United States was deeply flawed and that the

Fig. 3 Flowchart
example, translated from Fischer,
Frøkjær & Gedsø 1972, p. 18.

TechTrends

importance of computing in our daily lives had not translated
to preparing teachers to teach it. Another study also found that
while Danish school principals found it important to teach
computational thinking in primary and lower secondary
schools, they saw insufficient teacher training as one of the
biggest challenges to bring computational thinking ideas into
classrooms (Caeli & Bundsgaard forthcoming).

While national curriculums are pushing computer science
as a stand-alone subject and integration of computational
thinking in subject areas, we lack significant number of
teachers with adequate knowledge and skills. From pre-
service to in-service teachers, there is a lack of understanding
of computational thinking and typically, they have simplified
views of computational thinking, including seeing it as math-
ematics or rudimentary uses of computers (Yadav et al. 2014;
Sands et al. 2018; Yadav et al. 2018). We believe that a key
component of building teacher capacity is to show relevance
of computational thinking to their classroom using unplugged
approaches combined with plugged approaches.

Conclusion

In this article, we have examined the historical route of compu-
tational thinking to illustrate similarities between ongoing dis-
cussions today and those from as early as 1960s. The purpose
was to discuss how history can inspire and inform us today
when teaching computational thinking in compulsory education.

Specifically, we introduced how computational thinking
skills are rooted in non-digital (unplugged) human approaches
to problem solving, and we discussed how mainstream focus
changed to digital (plugged) computer approaches with a focus
on programming. As early as the 1960s, Peter Naur argued for
the need to bring computer science into school at the same level
as reading and writing. He considered the relation between tools
(such as, programming), problems, and people as a unified
whole in problem solving processes and underlined the impor-
tance of human brains – not machines – in solving problems.

To gain an understanding of the potential of computational
thinking and what computers are capable of as tools, we need
to use both unplugged and plugged approaches in the class-
room. Thus, we advocate for combining unplugged and
plugged activities to provide students with an opportunity to
fully understand and take advantage of the power of comput-
ing and prepare them to thrive in today’s society.

Many of the current discussions around computational
thinking described in our article were as lively in the 1960s,
1970s, and 1980s as they are today. Scholars in the field were
engaged in similar discussions as we are having today: What
is computational thinking? Does it require a computer? Is
computational thinking also relevant in non-STEM subjects
like humanities and arts or does it apply only to math and
science? Does computational thinking prepare for workforce,

life or both? Is it necessary for children in compulsory educa-
tion to develop computational thinking skills, and why? How
do we prepare teachers for teaching computational thinking?
How is it possible for educators and computer scientists to
successfully collaborate to consider both pedagogical con-
cerns and computing as a domain? What evidence supports
ways to teach computational thinking? These are all questions
that need to be examined further and worthy of consideration
as we develop and integrate computational thinking activities
for primary and secondary classrooms.

Compliance with Ethical Standards

Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Conflict of Interest Author A declares that she has no conflict of interest.
Author B declares that he has no conflict of interest.

References

Bell, T & Roberts, J. (2016). Computational thinking is more about
humans than computers, set 2016: no. 1, p. 3–7. https://doi.org/10.
18296/set.0030

Bocconi, S.; Chioccariello, A.; Dettori, G.; Ferrari, A.; & Engelhardt, K.
(2016). Computational thinking in compulsory education. Joint
Research Center. European Commission.

Brackmann, C. P.; Román-González, M.; Robles, G.; Moreno-León,
J.;Casali, A.; & Barone, D. (2017). Development of Computational
Thinking Skills through Unplugged Activities in Primary School.
WIPSCE 2017. Proceedings of the 12th workshop in primary and
secondary computing education: 65–72.

Caeli, E. N. & Bundsgaard, J. (forthcoming). Computational Thinking in
Compulsory Education: A Survey Study on Initiatives and
Conceptions. Manuscript submitted.https://code.org/curriculum/
unplugged

CS Unplugged (2019). Computer science without a computer. https://
csunplugged.org/en/

Denning, P. J. (2017). Remaining trouble spots with computational think-
ing. Communications of the ACM, 60(6), 33–39. https://doi.org/10.
1145/2998438.

Fischer, C.; Frøkjær, E.; & Gedsø, L. (1972).Datalære i skolen. Om data
og edb i samfundet. Gads Forlag.

Frandsen, K. (1983) (ed.) EDB i skolens undervisning. Danmarks
Skolelederforening.

Greenberger, M. (1962) (ed.). Management and the Computer of the
Future. The M.I.T. Press and John Wiley & Sons, inc.

Hermans, F., & Aivaloglou, E. (2017). To Scratch or not to Scratch? A
controlled experiment comparing plugged first and unplugged first
programming lessons. WIPSCE 2017. Proceedings of the 12th
workshop in primary and secondary computing education (pp.
49–56).

Holt, Lone H. (1988). Datalære integreret i dansk og matematik.
Datalære, Årg. 12, nr. 5, pp. 16–19.

ISTE (2016). ISTE standards for students. https://id.iste.org/docs/
Standards-Resources/iste-standards_students-2016_one-sheet_
final.pdf?sfvrsn=0.23432948779836327

Katz, D.L. (1960). The Use of Computers in Engineering Classroom
Instruction. Conference Report. College of Engineering. The
University of Michigan. The Ford Foundation Computer Project.

TechTrends

https://doi.org/10.18296/set.0030
https://doi.org/10.18296/set.0030
https://code.org/curriculum/unplugged
https://code.org/curriculum/unplugged
https://csunplugged.org/en/
https://csunplugged.org/en/
https://doi.org/10.1145/2998438
https://doi.org/10.1145/2998438
https://id.iste.org/docs/Standards-Resources/iste-standards_students-2016_one-sheet_final.pdf?sfvrsn=0.23432948779836327
https://id.iste.org/docs/Standards-Resources/iste-standards_students-2016_one-sheet_final.pdf?sfvrsn=0.23432948779836327
https://id.iste.org/docs/Standards-Resources/iste-standards_students-2016_one-sheet_final.pdf?sfvrsn=0.23432948779836327

Knuth, D. E. (1974). Computer science and its relation to mathematics.
The American Mathematical Monthly, 81, 323–343.

Malmberg, A. C. (1970). Datalogi i skolen: Læreruddannelsen – en
flaskehals. I Undervisningsministeriets tidsskrift (pp. 272–276).

NASA (2018). Katherine Johnson biography. https://www.nasa.gov/
content/katherine-johnson-biography

Naur, P. (1954). Elektronregnemaskinerne og hjernen. Perspektiv, 1(7),
42–46.

Naur, P. (1965). The Place of Programming in a World of Problems,
Tools, and People. Proc. IFIP Congress 65, 165–199

Naur, P. (1966). Plan for et kursus i datalogi og datamatik.
Regnecentralen.

Naur, P. (1968). Demokrati i datamatiseringens tidsalder. Kriterium, 3(5):
31–32. Nyt Nordisk Forlag Arnold Busck.

Naur, P. (1970). Planer og ideer for datalogisk institut ved Københavns
Universitet. Studentlitteratur.

Naur, P. (2005). Computing Versus Human Thinking. A. M. Turing
Award Lecture Video. ACM. https://amturing.acm.org/vp/naur_
1024454.cfm

NGSS Lead States. (Ed.) (2013). Next generation science standards: For
states, by states. National Academies Press.

Papert, S. (1980, 1993). Mindstorms. Children, Computers, And
Powerful Ideas. Basic Books

Pea, R., & Kurland, M. (1984). On the cognitive effects of learning
computer programming. New Ideas in Psychology, 2(2), 137–168.

Sands, P., Yadav, A., & Good, J. (2018). Computational Thinking in
K-12: In-service teacher perceptions of computational thinking. In
M. SKhine. (Ed.).Computational Thinking in the STEMDisciplines
(pp. 151–164). Springer.

Sveinsdottir, E. & Frøkjær, E. (1988). Datalogy – The Copenhagen
Tradition of Computer Science. BIT Numerical Mathematics,
28(3), 450–472

Undervisningsministeriet. (1972). Betænkning om edb-undervisning i det
offentlige uddannelsessystem. In Undervisningsministeriet.

Weizenbaum, J. (1976). Computer power and human reason: From judg-
ment to calculation. W H Freeman & Co.

Wing, J. M. (2006). Computational thinking. Communications of the
ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014).
Computational thinking in elementary and secondary teacher edu-
cation. ACM Transactions on Computing Education, 14(1), 1–16.

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking
for all: Pedagogical approaches to embedding a 21st century prob-
lem solving in K-12 classrooms. TechTrends, 60, 565–568. https://
doi.org/10.1007/s11528-016-0087-7.

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational Thinking
for Teacher Education. Communications of the ACM, 60(4), 55–62.
https://doi.org/10.1145/2994591

Yadav, A., Krist, C., Good, J., & Caeli, E. (2018). Computational thinking
in elementary classrooms:Measuring teacher understanding of com-
putational ideas for teaching science. Computer Science Education.
https://doi.org/10.1080/08993408.2018.1560550.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

TechTrends

https://www.nasa.gov/content/katherine-johnson-biography
https://www.nasa.gov/content/katherine-johnson-biography
https://amturing.acm.org/vp/naur_1024454.cfm
https://amturing.acm.org/vp/naur_1024454.cfm
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1007/s11528-016-0087-7
https://doi.org/10.1007/s11528-016-0087-7
https://doi.org/10.1145/2994591
https://doi.org/10.1080/08993408.2018.1560550

http://www.lom.dk 1

Computational
Thinking and
Technology
Comprehension in
K-9 schools: A
Round Trip

Elisa Nadire Caeli

PhD Student

Danish School of Education (DPU), Aarhus University
and Department of Teacher Education, University
College Copenhagen

Jeppe Bundsgaard

Professor

Danish School of Education (DPU), Aarhus University

http://www.lom.dk/

http://www.lom.dk 2

This article is a translated version of:

Caeli, E. N. & Bundsgaard, J. (2019). Datalogisk tænkning og teknologiforståelse i

folkeskolen tur-retur. Tidsskriftet Læring Og Medier (LOM), 11(19).

https://doi.org/10.7146/lom.v11i19.110919

Abstract
In this article, we examine computational thinking and technology

comprehension in education in a historical perspective. We present and

analyze Danish educational developments in this field since the 1960s and

until today, as well as how experiments with the subject known as “datalære”

(data education) were conducted throughout the 1970s and 1980s. This

subject focused especially on understanding digital technology in a critical

perspective and on computational problem solving, and there are many

similarities with the new Danish trial subject known as technology

comprehension. The purpose of this article is to present the Danish

experiences in this field and discuss how these experiences and the lessons

learnt at a high cost can inspire us today.

The article presents events and initiatives from this period chronologically.

Methodologically, we have selected empirical material that relates to

initiatives and discussions about computer science and digital technology in

Danish K-9 schools. We identify four periods from 1966 until the present with

a view to establishing an overview of trends, central initiatives and

discussions.

Introduction
In recent years, computational thinking has received increasing attention in

general education all over the world, including in Denmark. Most recently,

a number of experiments involving computational thinking have been

launched in 46 Danish K-9 schools over a period of three years from 2018

under the name ‘Technology comprehension’, in which the subject is tested

both as an independent subject and as an integrated part of seven existing

subjects. Among other things, the aim of the technology comprehension

subject is to help students to become critical co-creators of our (digitalized)

society, including developing an ability to understand the possibilities and

consequences of digital technologies, and to analyze and design digital

technologies to solve complex problems (EMU, 2019). For example, a

knowledge target for the independent experimental subject is described as

having “knowledge of the characteristics of algorithms and their structure,

as well as how they are applied in different contexts,” and in the subject

social science, students must be able to “discuss and consider the

http://www.lom.dk/
https://doi.org/10.7146/lom.v11i19.110919

http://www.lom.dk 3

significance of digital artefacts or technologies for the development of

society.” This requires competency in thinking computationally.

In many ways, the subject description is similar to the subject of data

education, which was discussed in the 1960s, with attempts at

implementation in the 1970s-1980s. In this subject, problem-solving and

social-critical perspectives were also in focus. In this context, we can also

observe striking similarities between the past and present-day debate in

the area, despite many decades of a rapidly accelerating digital society in

which new applications are being developed at record speed, and in which

we use a wealth of digital tools every single day.

When designing and testing a new subject, it is useful to know about

previous generations' insights and experience in the area. This enables us

to build an even more solid foundation for a subject than we could without

these insights and experiences, and we can better avoid repeating the same

errors as in the past. Thus, the purpose of this article is to explore how the

subject has developed, declined and now re-developed over time and up until

today in order to derive inspirational experiences from which we can learn

today.

Theoretical and methodological basis

The point of departure for the article is the early period of the subject Data

education, and the end point is the current period of Computational

thinking and technology comprehension. The description of the two

intervening periods Operational user competencies and infrastructure, as

well as Procurement of hardware and development of teaching resources

aims at examining and analyzing what has caused the long-standing

struggle for a place on the school timetable.

The historical events in the article are described chronologically. A

systematic division into the four periods mentioned above makes it

possible to create an overview of trends and thereby compare the key

initiatives and debates in the various periods. In order to clarify the

chronology of the focus of the different periods and how the periods

affected development, we have prepared a timeline of actual events (Annex

1).

Methodologically, we have selected empirical material, which is limited to

initiatives within, and discussions about computer science as well as digital

technology in K-9 schools. We present and analyze historical trends and

events on the basis of different types of empirical data: statutory provisions

in the form of factual presentations of educational policy initiatives in the

area, including official subject descriptions and decision-making processes;

http://www.lom.dk/

http://www.lom.dk 4

academic theory in the form of descriptions and analyses of what

researchers within computer science and education have, over time,

emphasized as important in a general education school; and events in

practice and in the societal debate in the form of descriptions and analyses

of how society and schools in practice have acted within the individual

periods. Thus, we have conducted an explorative literature search based on

key concepts such as “datalogi” (datalogy/computer science) and

“datalære” (data education), as well as by searching for key people who

have been mentioned in the public debate, participated in legislative work,

designed teaching resources, etc., and by talking to stakeholders at that

time.

History can help us to establish an understanding of developments and give

us a glimpse into a fledgling digital age in which computers were far from

commonplace, but when, nevertheless, forward-looking and progressive

initiatives in the area from which we can draw inspiration today were

taken as early as in the 1960s. However, we will start a little earlier, in the

1940s, when the world’s first computer was ready for use.

Everyone has to learn about the principles of
computer science
In 1946, the world’s first fully functional digital computer was constructed.

It took three years to build the ENIAC, which was developed by J. Presper

Eckert and John Mauchly at the University of Pennsylvania. The ENIAC was

further developed in the following years, so that in 1956 it had more than

100,000 electronic components and a memory of 100 words (approx. 1600

bits). At that time, the “Giant Brain” as it was called, covered 167 square

meters, weighed 30 tons, cost DKK 3 million, and consisted of 6,000 cables

that technicians had to move around if they had to change the program. In

other words, computers in school classrooms were not just around the

corner. However, it goes without saying that digital developments have

exploded since then. Most of us go around with a computer in our pocket,

which, despite its size, processes huge amounts of data and performs tasks

for us around the clock. Even though very few would have predicted the

extent of the computer’s influence today, pioneers in the area were already

getting ready for the entry of the machines into society and schools.

http://www.lom.dk/

http://www.lom.dk 5

The 30-ton ENIAC (Electronic Numerical Integrator and Calculator) was

developed by J. Presper Eckert and John Mauchly at the University of

Pennsylvania. The picture was taken in the period 1947-1955 at the Ballistic

Research Laboratory, and according to Wikipedia, it depicts the

programmers Glen Beck and Betty Snyder in the process of programming

ENIAC. This first model had no memory, so the program was attached to

cable connections. It could therefore take several days to reprogram the

machine. (Photo: Wikimedia Commons / Public Domain).

One of the leading pioneers was Denmark’s first professor of computer

science: Peter Naur. Professor Naur was critical of the way people talked

about computers as intelligent – as if there were a link between the ways in

which a human brain and a computer functioned. In 1954, he called off the

alarm about thinking machines in his article The Electronic Computer and

the Brain (Naur 1954), making his point that the danger lurked, not with

the machines that can perhaps think, but with the people who cannot, and

he also pointed out that the machine completely mechanically executes the

processes that a human brain has planned for it. The machine lacks both

initiative and originality. These points of view formed the basis for the

majority of his subsequent work, in which he extensively studied the way

the human brain works and thereby refuted that there was an overlap with

the way a computer works. Through a large number of initiatives, he

advocated that everyone should get to know the basic principles of

http://www.lom.dk/

http://www.lom.dk 6

datalogy. He held radio lectures on the importance of computers for society

and the individual, he wrote a large number of articles on the position of

datalogy in general education, and he designed detailed curricula; work

that really took off in the 1960s.

Peter Naur had no doubt that everyone – including children – should

develop computational skills in the same way as they developed

interdisciplinary skills in languages and mathematics at school. He

invented and introduced the Danish concept of datalogy (datalogi) in

connection with the publication of a plan for an educational subject in

datalogy and datamatics, as he considered there was a need for useful

designations for these topics in Danish literature and as a protest against

the English term computer science, which he considered mistakenly

indicated the computer as the focal point. Datalogy was about data and

data was a question of human understanding (Naur 1966; 2005).

Naur saw a great need for more elementary teaching in datalogy, stretching

beyond the use of specific programming languages. He believed that the

basic concepts of datalogy were of a more general nature, and that in many

ways they could shed new light on everyday tasks (Sveinsdottir & Frøkjær,

1988). In fact, he believed that once one realizes how datalogy combines

vital human activities and concepts, and can inspire and create new ideas in

all subjects, there can be no doubt that it should have its rightful place in

general education. According to Naur, language and mathematics were

closest related subjects, as, like datalogy, they entailed the use of tools such

as signs and symbols created by humans, and in all three subjects, these

tools could be used in a multidisciplinary manner. Thus, he believed that in

a time with computers, everyone should learn datalogy as a necessary

preparation for life.

 We all learn writing, reading and arithmetic, no matter whether

we end up being artists, doctors, lawyers or anything. ... In my view,

there is a strong need for improved interdisciplinary elementary

teaching in datalogy and datamatics, and as far as I can see, the

only difficulty is that no one has bothered to draw up the requisite

course material. (Naur 1966: 7-8, our translation)

Naur argued for that the subject could be incorporated into a curriculum as

either an independent subject or as part of mathematics – the crucial

aspect is what is learned, he said, meaning that emphasis should be on data,

data representation and data processes as fundamental concepts

illustrated by simple experiments. Even though he believed that computers

should also be mentioned as part of the subject, he pointed out that this

http://www.lom.dk/

http://www.lom.dk 7

was not the most important element. Instead, he emphasized the

importance of datalogy in relation to basic human activities such as

learning and problem-solving. While he was passionate about teaching

datalogy in general education – because he had a strong belief that it was

right and was important for society – he also doubted that it would happen

easily or quickly, and he predicted that it would take decades to make the

necessary changes due to the academic and organizational inertia of the

educational system (Naur 1966).

One of Naur’s most important points was that human understanding and

formulation of problems is closely linked to the tools available at any time,

regardless of whether or not these tools are digital, see figure 1.

Figure 1. Fundamental components of problem solving according to Naur

(Naur 1965).

He pointed out that a problem only exists by virtue of human

consciousness, and that a tool only exists as a tool when human beings

think of it as something that can solve a problem. As the characteristics of

tools for better or worse shape the human mindset and human perception

of problems, Naur believed that problem solving should entail an

understanding of a tool to make sure that humans are not restricted

creatively by its functions (Sveinsdottir & Frøkjær 1988: 463). Thus, he

also believed that learning a programming language without a basic

understanding was insufficient – a point that was also emphasized in a

report on EDP1 teaching in the public education system some years later, in

1972.

1 Electronic Data Processing

http://www.lom.dk/

http://www.lom.dk 8

Report on EDP teaching in the public education
system
In 1970, the Minister for Education at the time set up a committee to,

among other things, propose how EDP teaching could be integrated into

general education. This resulted in report no. 666 on EDP teaching in the

public education system (Danish Ministry of Education 1972), also known

as the ‘Johnsen report’, in which chapter 4 covered K-9 schools. The

committee took its outset in Naurs’ concept of datalogy using the variant

data education as a broader concept, directed at education. The aim of the

subject was to develop better communication and better problem-solving

skills, and the Committee described the subject area as the processes in

societal life in which data is crucial. The Committee pointed out that the

role of the citizen requires specific data, and that communication between

people is a form of data processing, as is individual cognition (Danish

Ministry of Education 1972: 23). The Committee summarized the

methodology of computer science education as:

1. What is the problem, what is the goal?

2. Which model structure or data representation should be applied?

3. What observations or actual data are to be produced?

4. How should data be processed and the method of computation tested

(the algorithm)?

5. How should the result be communicated to secure agreement that the

problem has been solved, or alternatively that the goals have been

achieved?

(Danish Ministry of Education 1972: 24, our translation).

In its analysis of computer science education at K-9 schools, the Committee

coupled the area with the objects of K-9 schools at that time, which among

other things emphasized promoting independent attitudes, assessment

skills and creativity, and considered teaching in relation to the

development of society. The Committee also noted that the aim of K-9

schools was not to give students specific vocational skills (Danish Ministry

of Education 1972: 39). In the analysis, the Committee emphasized that

data education should deal with general, cross-disciplinary concepts and

conceptualizations, such as data, problem formulation, model,

algorithmization and process, and that the subject would thus play an

important role in any problem-solving process. Therefore, they considered

it obvious to incorporate the concepts into application-oriented contexts.

They pointed out that data education could enhance students’ creativity

and imagination, since the solution of computational and datalogical

problems can usually be designed in many different forms, and they

http://www.lom.dk/

http://www.lom.dk 9

warned that students’ problem-solving activities could assume specific

forms and lack general applicability. “If teaching is oriented towards

programming or coding, this risk will be obvious,” they pointed out (Danish

Ministry of Education 1972: 40, our translation). As datamatic tasks are

most commonly solved in a collaboration, they noted that the data

education subject would encourage group work. Experience in the subject

had also shown that it was possible to include elements of data education

in all year groups in K-9 schools.

The Committee also presented some subject-specific didactic

considerations. They highlighted the interdisciplinary nature of data

education, and that the algorithmic way of thinking in data education was

most useful. They described the formulation and description of algorithms

as fundamental activities in most types of problem-solving, but again they

emphasized that the use of existing programming languages as means of

description was hampered by the many formal and technical details that

they considered as irrelevant to bring into K-9 school teaching, and which

could easily make it seem like coding or programming teaching, which was

contrary to the actual aim. Therefore, they suggested using a means of

description that was not hampered by a strict formal structure, such as a

flowchart, but they also realized that the problem with this could be that,

even though it was suitable for communication between people, it would be

difficult to use in communication with a computer. The value in a student

being confronted directly with the consequences of a proposal solution

could easily be lost, and students would not gain an understanding of the

iterative nature of the algorithm formulation. Although formal

programming skills were not the main focus of data education, it was,

however, a question of developing solutions that could be executed by a

computer.

Teacher training for K-9 school teachers had a dedicated chapter in the

report. The Committee stated that introducing the subject into teacher

training was a necessary consequence of introducing the subject in K-9

schools. This was argued in particular by head of department and associate

professor at the Danish School of Education (Danmarks Lærerhøjskole),

Allan Malmberg, in the 1970s.

Teacher training as a bottleneck
One of Malmberg’s points was that, more than any other factor, teacher

training could become a bottleneck and could determine where computer

science would end in the educational scene. Initially, he advocated

educating mathematics teachers by virtue of course activities focusing on

problem-solving with relevant thought processes:

http://www.lom.dk/

http://www.lom.dk 10

After careful formulation of the submitted task situation, a plan is

drawn up specifying the important phases in a work procedure

that is expected to lead to solution of the task. On the basis of this,

an algorithm for the solution process is drawn up, i.e. a detailed

description in which the individual operations in the workflow are

broken down into such an elementary level that, without further

division, they can be included as individual instructions in the

program that is later to be passed on to the computer. (Malmberg

1970: 274, our translation)

Malmberg continued by explaining that, prior to the computer processing,

it was necessary to translate the algorithm into a programming language,

but he pointed out that this phase was the least interesting:

The actual – and often highly demanding – task is preparing the

algorithm. (Malmberg 1970: 274, our translation)

For this reason, Malmberg also advocated including activities in teaching to

express algorithms in a way that could be passed on to the computer –

without necessarily having to learn to program. But it was important to

work on developing the mental datalogical thinking processes that precede

programming.

What Malmberg wanted for the future was to implement and aim a subject

within the field at teachers from all fields of study – not just mathematics

and physics teachers. In this context, the role of the computer in society

and the relationship between humans and computers should be addressed.

He thought that the subject should be broader than was possible through

just mathematics. It should not be stuck too tightly to mathematics, he said,

because “society’s use of computers is predominantly outside the

mathematical field.” In the years to come, therefore, he hoped that general

education (K-9) and teacher training would be taken into account in

development of a computer capacity within teaching and research as an

“investment that would have the greatest impact on all of society”

(Malmberg 1970: 276, our translation).

Datalogy as a mental tool with a general
purpose
At about the same time, in 1974, the American professor of computer

science, Donald E. Knuth, considered Denmark and Peter Naur’s

introduction of datalogy rather than the confusing computer science. Knuth

pointed out that datalogy cleverly indicates that this science involves more

http://www.lom.dk/

http://www.lom.dk 11

than numerical equations. It has to do with data, i.e. the “stuff” that the

algorithms manipulate, he said (Knuth 1974).

Knuth described an algorithmic view as a useful way of organizing

knowledge very generally. He considered the question, “What can be

automated?” as one of the most inspiring philosophical practical questions

in civilization. He described the educational bonus effects of developing

computational skills as knowing how to construct, manipulate, understand

and analyze algorithms, and he pointed out that this knowledge would

prepare a person for much more than writing good computer programs:

It is a general-purpose mental tool which will be a definite aid to

his understanding of other subjects, whether they be chemistry,

linguistics, or music, etc. (...) It has often been said that a person

does not really understand something until he teaches it to

someone else. Actually a person does not really understand

something until he can teach it to a computer, i.e. express it as an

algorithm. (Knuth 1974: 326-327)

He explained that the computer forces very precise thinking, which leads to

a much deeper understanding than if we tried to understand things in a

traditional way.

Six years later, in 1980, Seymour Papert revolutionized the field with his

work Mindstorms. In the introduction to the second edition, he wrote that a

programming language such as his own LOGO, which was the first child-

friendly programming language, could help students develop new ways of

thinking and learning (Papert 1993). In most of the educational situations

in which children came into contact with computers, the computer

programmed the child, but the relationship in the LOGO environment was

reversed: The child could now program the computer.

In teaching the computer how to think, children embark on an

exploration about how they themselves think. (Papert 1980: 19)

Papert’s ideas stemmed from his work with Piaget. Papert was impressed

with the way in which Piaget perceived children as active creators of their

own intellectual structures, and he believed that the development of

programming skills with the associated exploration of own thinking could

be transferred to other areas. For example, he pointed out that

programming was about being good at isolating and correcting errors – i.e.

correcting the parts that prevent a program from working. “The question to

ask about the program is not whether it is right or wrong, but if it is

fixable,” he said (Papert 1980: 23). If this mindset were transferred to how

http://www.lom.dk/

http://www.lom.dk 12

society thought about knowledge, he also believed that we would be less

intimidated by the fear of “making mistakes”.

Papert described his ideas about new opportunities for learning, thinking

and emotional and cognitive development based on computational

technology and computational ideas, as dependent on a future in which

computers would be a significant part of every child’s life (Papert 1980: 17-

18). He was the first to apply the specific terminology of computational

thinking when he explained in his book how it was not yet possible in 1980

to create computational environments in the form of social “computer

clubs”. Even though there had been attempts to do so, the environments

were too primitive, he said.

Their visions of how to integrate computational thinking into

everyday life were insufficiently developed. But there will be

more tries, and more and more. And eventually, somewhere, all

the pieces will come together and it will ‘catch’. (Papert 1980:

182)

Experiments with data education in the 1980s
At the same time, in Denmark, in 1983, the Danish association of

headmasters (Danmarks Skolelederforening) published a practice-oriented

booklet on EDP in schools (Frandsen 1983), which contained a status

report on EDP in teaching at K-9 schools, and described four initiatives in

which K-9 schools could, at their own initiative, or with funds from the

Danish schools trials council (Folkeskolens Forsøgsråd) experiment with

data education in teaching. Despite the 1972 Johnsen Report, “for

inexplicable reasons” there was no data education on the school schedule.

The introduction to the booklet stated that, despite their very short

lifespan, computers had already had a very large influence on society and

everyday life, and it was predicted that this was probably only the

beginning of a transition to an information society. It was stressed that

there were two different interfaces with regard to use of the computer and

EDP at schools: EDP as a means to solve tasks, and teaching about EDP,

computers and consequences for us all, “but unfortunately, these things are

often mixed together, with consequential ambiguity” (Frandsen 1983: 3).

The first interface was further divided into the computer used as a medium,

the computer used as a tool (aid) and the computer used for administrative

tasks, while the second interface was mainly about data education as an

interdisciplinary subject.

http://www.lom.dk/

http://www.lom.dk 13

It was up to the individual schools themselves to formulate the objectives

of the experimental teaching and what they thought the subject should

contain. However, a suggested curriculum in 1985 described it as:

The objective of the teaching is to allow students to acquire insight into

electronic data processing and its applications.

(2) The teaching will give students the opportunity to experience problem-

solving through use of the computer.

(3) The teaching will help students acquire a basis to assess and consider the

opportunities, influences and consequences that result from the use of

computers.

(Skole og edb 1985: 149, our translation)

In 1986, in collaboration with the Danish schools trials council

(Folkeskolens Forsøgsråd), more than 3,000 pages were written in reports

on various topics: data education as a compulsory and independent

subject; experiments in which elements of data education had been

integrated in other subjects; experiments with data education as a stand-

alone subject; and experiments with computer-aided teaching (Hansen &

Jensen 1986: 35). There are also reports on experiments with data

education in groups of exclusively girls or boys (for example Hjort Jensen

1986).

Common for all these reports was that, at that time, computers were by no

means commonplace, and the obvious fact that computers had nowhere

near the same intuitive user interfaces as they do today. This may be why

teaching focused on the mental and social processes surrounding the

understanding and development of computer programs, and why it was

based on technologies unplugged (without electricity).

http://www.lom.dk/

http://www.lom.dk 14

To illustrate the structure of a computer, these fifth-grade students (11 year-

olds) made their own model of a computer, SKJOLD, out of matchboxes. The

model consisted of an input unit, a control unit, a calculation unit, an internal

storage unit and an output unit. They then went through various examples of

user instructions (programs). In other words, they learnt about the different

components of a computer through something concrete and tangible, but

without using electricity. (Photo: Danmarks Skolelederforening, Frandsen

1983).

http://www.lom.dk/

http://www.lom.dk 15

In 1981, a computer science education team held a fictive municipal election.

The students examined the rules for elections and initially made the counts

and calculations by hand. They then transferred their calculation methods to

EDP and assessed the positive and negative consequences of this transfer. In

fact, in the same year there were real municipal elections, and the students

were given a room so that they could listen when polling results were

telephoned in. They entered the results on their computers and, after a

minute, they could come up with a distribution of successful candidates.

(Photo: Danmarks Skolelederforening, Frandsen 1983).

In the US, researchers in the area were also discussing the nascent

introduction of computers in schools. In a 1984 article, Roy D. Pea and D.

Midian Kurland wrote about the revolutionary changes that were taking

place in education at the time, with widespread access to computers at

schools, which were used for learning activities across curricular, for

example to design their own software. However, they pointed out:

… virtually all educators are as anxious and uncertain about these

changes and the directions to take as they are optimistic about

their ultimate effects. Now that this admittedly powerful symbolic

http://www.lom.dk/

http://www.lom.dk 16

device is in our schools, they ask, ‘what should we do with it?’ (Pea

& Kurland 1984: 137)

Pea and Kurland described the environment at that time as uncritically

optimistic about potential cognitive benefits from learning to program.

They saw a risk of what they called naive “technoromantic” ideas; that

ideas were anchored in the curriculum by affirmation rather than because

of empirical verification through research and development.

Among other things, the two researchers compared programming with

reading. Like reading, which has historically been considered as equal to

decoding, programming was often considered as learning vocabulary and

syntax in a programming language. However, the researchers pointed out

that skilled programming, like reading, is a complex and context-dependent

process that requires comprehension. They believed that there was far too

much focus on the grammar and rules of programming, and they also

maintained that neither programming languages nor computers should

teach students programming. Teachers should.

During the same period, the important role of teachers was also being

stressed in Denmark, highlighting that the computer is a tool in the

teacher’s hand: not a replacement for them.

http://www.lom.dk/

http://www.lom.dk 17

The microcomputer was here to stay, but it should not be used at any price –

and certainly not if other means or interaction between teacher and student

could process the material in a better way. The computer could not, it was

stressed, replace the teacher, and it was only a tool in the teacher’s hand.

Schools did not want to be taken lying down by the commercial interests of

hardware manufacturers and book publishers; they wanted pedagogically

designed teaching materials to be developed so that the electronic devices

could be used appropriately. (Drawing: Danmarks Skolelederforening,

Frandsen 1983).

As mentioned previously, data education was never realized, despite the

many recommendations and in-depth descriptions from ambitious

educators and researchers in the area. For a short period of time in the

1980s, the subject could be offered as an elective subject, but the Minister

for Education, Bertel Haarder, later made it a compulsory section 6 subject

in line with sex education and road-safety, which nobody took

responsibility for: like the interdisciplinary subject ‘IT and media’ today.

Over the next two decades, focus shifted from problem-solving and

democratically oriented data education to IT skills and procuring software

and hardware, followed by a phase in which IT was seen as a tool to

support changed educational practices and to be integrated as such in all

subjects. We briefly present these two phases in the following, before

arriving at the situation today, where there is renewed interest in

computer science as an approach and as content.

Focus on procurement and IT skills
In 1993, a new Danish School Act (folkeskolelov) came into force with a

requirement that EDP was to be integrated into all subjects for all year

groups. The Act included an additional three elective courses for 8th-10th

grades (14-16 year-olds): text processing (as a replacement for

typewriting), technology and media (Dalgaard 1994). In 1992, the Ministry

of Education had conducted a survey of the number of computers schools

had at their disposal for teaching, and this showed that there was a big

difference between the schools’ ability to comply with these new statutory

requirements and how the municipalities prioritized financial resources in

the EDP area. Lack of educational programs was also a problem. This

triggered a number of initiatives.

Denmark’s first internet-based network, Sektornettet, was established in

1993-1994 with the aim to connect the entire educational system to the

internet. The network was largely in place before 2000. The work was

carried out under the auspices of UNI-C (now the Agency for IT and

Learning (STIL)).

http://www.lom.dk/

http://www.lom.dk 18

Operational user competences or IT skills came into focus in 1996, when a

number of PC user certificates were introduced, including a certificate for

teachers, followed a few years later by a Junior PC user certificate for K-9

school students. The purpose of this certificate was to ensure that the

students received a minimum basic knowledge about a PC. They received a

certificate of IT skills with which they could document that they had the

necessary standard qualifications to participate actively in the information

society (Hansbøl & Mathiasen 2003). The focus of the certificate was on

operations such as being able to change font to italics or save data.

In parallel with the focus on ensuring accessibility and IT skills, in the mid-

1990s the Centre for Technology-supported Teaching (Center for

Teknologistøttet Undervisning) was granted DKK 100 million to allocate to

projects on IT in education, an IT toolbox called Poseidon was established,

and the schools’ database service (SkoDa) was set up (Bundsgaard,

Petterson & Puck 2014).

Focus on pedagogical development and the use
of IT in all subjects
This focus on the pedagogical aspects of IT in teaching was strengthened in

2001, when funding of DKK 323 million was implemented through the IT and

Media in K-9 schools (IT og Medier i Folkeskolen, ITMF) project. Among other

things, ITMF supported development projects, the production of a media

library and continuing education for teachers. Later, in 2004-2008, the IT in K-

9 schools (IT i Folkeskolen, ITIF) followed, with a budget of DKK 750 million,

primarily to support computer procurement and development of six subject-

specific digital teaching resources (Bundsgaard, Petterson & Puck 2014). In

general, these teaching resources had a very short lifetime and did not form

the basis for further development.

In 2009, the common goals (Fælles Mål) initiative, introduced in 2003 to

replace the previous clear goals (Klare Mål) initiative, was revised, and in this

connection Booklet 48, IT and media competencies in K-9 schools (It- og

mediekompetencer i folkeskolen), was published (Danish Ministry of Education

2009). The introduction to the booklet focused on digital service and

functional mastery of IT as a means of communication, and it described

children and young people as front runners because they quickly took to

digital technologies and thus helped drive development. Among other things,

it was said that “good digital skills are increasingly required to find and utilize

recreational activities, for example participation in many outdoor activities

requires that you seek information and register via the internet.” Digital

competences were defined as “the possession of certain skills within IT”, but

there was also an emerging focus on competencies in “critical information

http://www.lom.dk/

http://www.lom.dk 19

search, data processing and the IT user’s ability to interpret diverse

representations from digital media.” Basically, the booklet consisted of the

four interdisciplinary themes: information search and collection; production

and dissemination; analysis; and finally communication, knowledge-sharing

and collaboration.

In the late 00s, IT-didactic research began to gain momentum, among other

things as a result of the requirement for follow-up research for the large ITMF

grant, and because a number of PhDs had been educated in the area

(Bundsgaard 2017).

Hardware procurement was also still in full swing, particularly as interactive

whiteboards at first, and from 2011 as tablets, especially iPads. However,

these hardware-focused initiatives also met with criticism. Among other

things, procurement of interactive whiteboards in 2012 by the City of

Copenhagen for all the municipality’s schools hit front pages with headlines

like “City of Copenhagen wastes DKK 21 million on interactive whiteboards”

(Hansen 2012), and the Municipality of Odder’s purchase of iPads for all

teachers and students in 2011 for DKK 8 million was also subject to much

criticism (Mortensen 2012).

In 2011, the government allocated DKK 500 million and the municipalities a

further DKK 500 million for an initiative to increase the use of IT in K-9

schools, initially ending in 2015 and later extended to 2017. The initiative

specifically supported municipal procurement of digital learning resources,

development of digital learning resources, establishment of a teacher network,

impact measurement of digital teaching resources, and the digital

infrastructure in the schools. Educational development projects such as

demonstration schools experiments were also supported (Danish Ministry of

Education 2018b). In the meantime, IT and media were introduced as a cross-

disciplinary theme under the new 2014 School Act by Minister for Education,

Christine Antorini, and specific academic IT goals were included in all subjects.

At the same time, Booklet 48 was withdrawn.

The conclusions of the demonstration school experiments indicated, among

other things, that the prototypical teaching practice and integration of IT in K-

9 schools was traditional and controlled by conservative logic, but they also

showed that IT could promote creativity and innovative solutions (Hansen &

Bundsgaard 2016).

http://www.lom.dk/

http://www.lom.dk 20

Forward to the past: technology
comprehension and computational thinking
In 2017, Minister for Education, Merete Riisager introduced an

experimental elective subject in technology comprehension in 13 schools.

The purpose of the elective subject has similarities with the data education

subject in the 1970s as well as the elective subject in the 1980s, although

with greater focus on programming skills than at that time.

In 2018, the Danish Ministry of Education (2018a) published an action plan

for technology in teaching with a vision that Danish children should be

creative with digital technology rather than just use it. The challenges in

society are described as both future growth in Denmark and the degree of

individual freedom. The background for the action plan is thus to ensure

that we can all participate actively in our democratic society, including

being critical about algorithms, and that we are prepared for the changes in

core services predicted in the labor market in future years, where it will be

possible to digitalize many tasks, and where there will be an increasing

demand for IT specialists.

In 2018, the minister also established a number of experiments with the

subject over a three-year period. Different models for technology

comprehension were to be tested as an independent subject and integrated

into other subjects, in much the same way as in the experiments in the

1980s, although at that time without the digital technologies that we have

today. In December 2018, common goals and subject objectives were

published with four areas of competence: digital empowerment, digital

design and design processes, computational thinking, as well as

technological knowledge and skills (EMU 2019).

In upper secondary schools, in 2015 the IT subject, informatics, was

introduced as a permanent field of study and elective subject after a four-

year trial period for the subject under the name information technology

(Danish Ministry of Education 2017). The identity of the subject is based on

abstraction and logical thinking, with an innovative approach to IT product

development, which provides the basis for understanding the development

and structure of information technology and its interplay with users and

society. The experimental subject technology comprehension for K-9

schools has particular focus on the general educational nature of the

subject, and similar to the upper secondary subject it entails that students

develop computational thinking, among other things.

The concept of computational thinking was re-introduced by Professor

Jeannette M. Wing (2006) as an important competence in line with reading,

http://www.lom.dk/

http://www.lom.dk 21

writing and arithmetic. In Wing’s understanding, computational thinking

generally involves:

 … solving problems, designing systems, and understanding human

behavior, by drawing on the concepts fundamental to computer

science. (Wing 2006: 33)

In a report on the development of computational thinking in compulsory

education, the authors point out that there is no agreement on the

definition of computational thinking, but that it usually includes core

concepts and competencies such as abstraction, algorithmic thinking,

automation, breaking-down problems, troubleshooting and generalization

(Bocconi et.al, 2016), and that programming is regarded as a constituent

that can make computational thinking more concrete. For example,

algorithmic thinking comes ahead of programming.

Wing’s re-introduction has meant that an increasing number of countries at

global level have developed and are developing curricula that aim to ensure

that students develop computational thinking skills. The aforementioned

report concludes that eleven countries in Europe (DK, FR, FI, HR, IT, MT,

PL, PT, TR, UK-EN, UK-SCT) have recently undergone reforms that include

integration of computational thinking and related concepts. Seven others

(CZ, GR, IE, NL, NO, SE, UK-WLS) plan to integrate computational thinking

into compulsory education, and yet another seven countries (AT, PT, CY, IL,

LT, HU, SK) integrate computational thinking by building on long-term

traditions within computer science, primarily in upper secondary schools.

Some of these also extend computer science teaching to include K-9 schools

(Bocconi et al. 2016). Furthermore, the International Computer and

Information Literacy Study (ICILS) from the International Association for

the Evaluation of Educational Achievement (IEA) was expanded in 2018 to

include an evaluation of students’ computational thinking competencies

(IEA 2018).

Discussion
The purpose of this article is to explore how the subject we today call

technology comprehension has developed, declined and now re-developed

over time and up until today in order to derive inspirational experience

that we can learn from.

Looking back on developments over the past 50 years, we can identify four

periods. The first we call ‘data education’, and it begins in 1966 with Peter

Naur’s ideas about the need and content of datalogy teaching in K-9

schools. Focus here is on enabling students to think critically about the role

http://www.lom.dk/

http://www.lom.dk 22

of computers in society and to think computationally, which is more than

just being able to program. Naur sowed some important seeds for a report

on the subject of data education (1972), although the subject was only

introduced as an elective subject for a short period in the 1980s, and in

practice it took many different forms – from focusing on understanding

data and the structure of the computer, to pure programming courses. Naur

was forward-looking with his thoughts on data education long before the

computer arrived in the classroom. For this reason, this period is also

longer than the following, when developments in the area accelerated.

The following period, “operational user competences and infrastructure,”

began in 1990, when data education was abolished as an elective subject. In

this period, focus turned to enabling students to manage what has now

been established as machines that can be used in almost all areas of life.

During this period, computers were generally thought of as something that

needs to be integrated into all subjects and support teaching. Therefore

focus was also on getting a sufficiently large number of devices and not

least getting schools connected to the burgeoning internet.

The third period starts around 2000, when focus on procuring hardware

continued, although now also in the form of interactive whiteboards,

tablets and later robots, 3D printers, etc. During this phase, there was also

strong focus on developing teaching resources and seeking methods to

move away from the many isolated initiatives and projects in some schools

towards integration in daily teaching at all schools. Among other things,

this was through massive efforts to generate interest and a market for

digital learning resources. We call this period “procurement of hardware

and development of teaching resources”.

In recent years, we can see an emerging new period, which we call

“computational thinking and technology comprehension”. This period

began to develop five to ten years ago with initiatives such as Coding

Pirates and FabLab@SCHOOLdk as well as IT-didactic debate in the area. In

one sense, Denmark is an extension of a large number of countries that

have implemented reforms and initiatives aiming to teach students how to

use IT to promote creativity and innovative solutions through the

development of computational thinking.

When, in 2006, Professor Jeannette M. Wing reintroduced computational

thinking as an important competence in line with reading, writing and

arithmetic, she had a different perspective than originally2. While Peter

2 Parts of this and the following section are written in an email dialogue with Peter J. Denning in
2018.

http://www.lom.dk/

http://www.lom.dk 23

Naur encouraged all children to learn to understand and use computers,

Wing suggested that they should learn to think like a computer scientist

(Wing 2006). Through her work at the US National Science Foundation, she

started an international movement to get computational thinking into

schools. This movement is very much based on the idea that computational

thinking is problem-solving like computational steps and algorithms, i.e. it

clearly highlights programming. Any emphasis on programming largely

excludes other areas such as artificial intelligence, data analysis, neural

networks, quantum mechanics and so on, all of which depend on

computational thinking with hardware, computer systems, networks,

simulation and design. Computer scientists incorporate all these things, not

just programming.

The movement has been under criticism from several educational

researchers, especially Professor Peter J. Denning (2017), an American

pioneer within computer science, who points out that the latest definitions

of computational thinking feign that it all started in the modern computer

age, even though many computer science methods for algorithms and

machines have been a part of human history for thousands of years. Focus

on programming and algorithms has created a narrow understanding of

computational thinking, which has caused a number of misunderstandings

about algorithms and machines with a risk that students will believe that

computers can do more than they actually can, and that we will fail to

distinguish between what people can do that computers cannot. Such a

misunderstanding is the notion of an algorithm as any step by step

instruction. This ignores the essential requirement that the algorithm has

to be accurate enough for a machine to execute it without human

assessment or interpretation. Another is the idea that a computer is not

important in the formulation of algorithms, even though, throughout

history, any computational algorithm is designed to control or direct a

machine.

Denning argues that computational thinking involves mental habits and

methods to find out how to get computers to do a job for us. This entails

that, when solving problems, students incorporate those who are to use

their programs and technologies. Users – not programmers – decide

whether a solution successfully performs a job and is useful. Therefore,

students should learn to listen to users and incorporate what users say in

their design. Notwithstanding the importance of education in

computational steps and algorithms, it is far from the computational

thinking that children need.

Another important issue is the idea that the reliability of the programs

depends on formal evidence. Evidence is useful when possible, but most

http://www.lom.dk/

http://www.lom.dk 24

large systems depend on many other methods for reliability. In this

connection, Denning points out that: “Much of computing is not about

programming but design of computations, and much of design draws from

engineering rather than mathematics.” This view is consistent with Peter

Naur’s philosophy. Naur had a comprehensive and inclusive view of

computer science – not a narrow approach only including programming

and formal structures. He said that children should learn to understand

computers, not just learn programming.

Denning points out that computational thinking is a very valuable skill, and

he is positive about efforts to make computer science more accessible, but

with the Finnish computer science professor Matti Tedre, he warns that a

lack of insight into the long and comprehensive history of the concept may

lead to weaker and less ambitious versions of computational thinking and

this lack of insight may trigger decline rather than progress. In other

words, they say:

When researchers do their homework well, they know what

previous generations of scientists have tried and done, and where

they have succeeded and failed. They avoid ‘reinventing the wheel’

by acknowledging predecessors who built the foundations on which

the current generation of researchers is now working. (Tedre &

Denning: 2016)

Perspectives
We should be aware of the foundation on which we build up the subject –

and compared with international trends, it seems that Denmark differs by

focusing on other aspects of what Denmark has termed “technology

comprehension”, and by historically having been at the forefront with a

broader general education focus.

The aim of introducing the elective subject of technology comprehension in

2017 was, among other things, to ensure that everyone is able to

participate actively in democratic society, including to relate critically to

algorithms. In continuation of this, the experimental program for

technology comprehension now aims for students to acquire basic

knowledge about networks, algorithms, programming, logical and

algorithmic thinking, abstraction and pattern recognition, data modelling,

and tests and testing; that they develop an understanding of design

processes for complex problem-solving; and that they are taught about the

importance of technology and automation for society, including developing

an understanding of security, ethics and consequences of digital technology

(EMU 2019).

http://www.lom.dk/

http://www.lom.dk 25

As pointed out above, today the area should not only involve

understanding traditional sequential algorithms that are performed step by

step. Many computer programs are now developed using artificial

intelligence, for example in the form of neural networks, built up from

parallel algorithms executed simultaneously. Whereas sequential computer

programs execute rules by steps, neural networks are constantly learning

new behaviors through continuous input (this is referred to as machine

learning). This makes it far more difficult – and often impossible – to fully

grasp the consequences of neural networks. When we feed computer

systems with our data, we, the users, are in fact giving the program

instructions. For example, artificial translation programs learn from users

how to translate a specific word in the future; location services learn how

long a given route takes by car; and search engines learn what is to have

highest priority. While this has created far greater opportunities, it has also

spawned a large number of moral dilemmas and consequences that we

cannot examine in more detail in this article.3

However, we can conclude that such issues have only made it even more

urgent for children to develop a fundamental understanding of algorithms

and data processes. And, in a certain sense, we can see a repetition of Peter

Naur’s exactly 50-year-old point that:

Power over a highly computerized system clearly [will] lie with

those who understand how it works,

and that:

... understanding of computer programming must be brought into

general education and thus become part of the public domain. ...

There’s no way around it, we all have to understand computers.

(Naur 1968: 32, our translation)

It will be interesting to see whether these ideas are realized in Denmark

after the ongoing experiment – or whether the important ambitions

flounder once again in a ministerial reshuffle or a change of government.

References
 Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K. (2016).

Developing computational thinking in compulsory education –

Implications for policy and practice. European Commission, Joint

3 This major issue is dealt with in Caeli & Bundsgaard, 2020.

http://www.lom.dk/

http://www.lom.dk 26

Research Centre.

http://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/j

rc104188_computhinkreport.pdf

Bundsgaard, J.; Petterson, M. & Puck, M. R. (2014). Digitale kompetencer. It i

danske skoler i et internationalt perspektiv. Aarhus Universitetsforlag

Bundsgaards, J. (2017). Fagdidaktik og it. Learning Tech – Tidsskrift for

læremidler, didaktik og teknologi, (2): 6-31.

Caeli, E. N. & Bundsgaard, J. (2020). Teknologikritik i skolen – et

demokratisk perspektiv på teknologiforståelse. In: Haas, C. og

Matthiesen, C. (Eds.). Fagdidaktik og demokrati. Samfundslitteratur.

Dalgaard, L. (1994). Edb i undervisningen i folkeskolen. Nytt om data i

skolan, nr. 1: 28-31.

Denning, P. J. (2017). Viewpoint. Remaining Trouble Spots with

Computational Thinking. Communications of the ACM, 60(6): 33:39

EMU (2018). Teknologiforståelse valgfag (forsøg) – Fælles Mål og læseplan.

https://www.emu.dk/modul/teknologiforst%C3%A5else-valgfag-

fors%C3%B8g-%E2%80%93-f%C3%A6lles-m%C3%A5l-og-

l%C3%A6seplan

Frandsen, K. (1983) (Ed.) EDB i skolens undervisning. Danmarks

Skolelederforening.

Hansbøl, M. & Mathiasen, H. (2003). Junior PC-kørekort. Forskningsrapport

ITMF-Projekt 373. Danmarks Pædagogiske Universitets Forlag.

Hansen, K. F. & Jensen, P. E. (1986). Informationsteknologi og skole. Status

og udviklingslinjer. Danmarks Pædagogiske Institut. Munksgaard.

Hansen, T. H. (2012). Kritik: Københavns Kommune spilder 21 millioner på

interaktive tavler. Version 2.

https://www.version2.dk/artikel/koebenhavns-kommune-bruger-21-

millioner-paa-fiasko-skole-it-46203

Hansen, T. I., & Bundsgaard, J. (2016). Effektmåling af

demonstrationsskoleforsøg: Afrapportering af kvantitative undersøgelser

på tværs af de tre demonstrationsskoleprojekter i AUUC-konsortiet.

Læremiddel.dk.

http://www.lom.dk/
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_computhinkreport.pdf
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_computhinkreport.pdf
https://www.emu.dk/modul/teknologiforståelse-valgfag-forsøg-–-fælles-mål-og-læseplan
https://www.emu.dk/modul/teknologiforståelse-valgfag-forsøg-–-fælles-mål-og-læseplan
https://www.emu.dk/modul/teknologiforståelse-valgfag-forsøg-–-fælles-mål-og-læseplan
https://www.version2.dk/artikel/koebenhavns-kommune-bruger-21-millioner-paa-fiasko-skole-it-46203
https://www.version2.dk/artikel/koebenhavns-kommune-bruger-21-millioner-paa-fiasko-skole-it-46203

http://www.lom.dk 27

Hjort Jensen, H. (1986). Datalære – også for piger: det kan være en fordel at

dele klassen op i rene drenge- og pigegrupper i faget datalære.

Folkeskolen. 103, 19: 808-809.

IEA (2018). ICILS. International Computer and Information Literacy Study.

http://www.iea.nl/icils

Jacobsen, J. (2001). Pc-kørekort til skoleelever. Folkeskolen.dk, April 5,

2001. https://www.folkeskolen.dk/13030/pc-koerekort-til-skoleelever

Knuth, D. E. (1974). Computer Science and its Relation to Mathematics. The

American Mathematical Monthly, vol. 81: 323-343

Malmberg, A. C. (1970). Datalogi i skolen: Læreruddannelsen – en flaskehals.

Undervisningsministeriets tidsskrift, 272-276.

Mortensen, H.N. (2012). Ingen dokumenteret effekt: Skoler køber iPads i

blinde for millioner. Version 2, September 18, 2012.

https://www.version2.dk/artikel/ingen-dokumenteret-effekt-skoler-

koeber-ipads-i-blinde-millioner-47792

Naur, P. (1967). Datamaskinerne og samfundet. Søndagsuniversitetet – Bind

85. Munksgaard.

Naur, P. (1968). Demokrati i datamatiseringens tidsalder. Kriterium, 3, 5,

June 1968. Nyt Nordisk Forlag Arnold Busck.

Naur, P. (1954). Elektronregnemaskinerne og hjernen. Perspektiv 1 (7): 42-

46.

Naur, P. (1966). Plan for et kursus i datalogi og datamatik. Regnecentralen.

Naur, P. (1965). The Place of Programming in a World of Problems, Tools,

and People. Proc. IFIP Congress 65: 165-199.

Papert, S. (1980, 1993). Mindstorms. Children, Computers, And Powerful

Ideas. Basic Books.

Pea, R. & Kurland, M. (1984). On the cognitive effects of learning computer

programming. New Ideas in Psychology 2, 2, 137-168.

Skole og edb (1985). Vejledende forslag til læseplan for valgfaget datalære i

folkeskolen. Skole og edb, 1985: 149-152

Sveinsdottir, E. & Frøkjær, E. (1988). Datalogy – The Copenhagen Tradition

of Computer Science. BIT Numerical Mathematics, 28 (3), 450–472.

http://www.lom.dk/
http://www.iea.nl/icils
https://www.folkeskolen.dk/13030/pc-koerekort-til-skoleelever
https://www.version2.dk/artikel/ingen-dokumenteret-effekt-skoler-koeber-ipads-i-blinde-millioner-47792
https://www.version2.dk/artikel/ingen-dokumenteret-effekt-skoler-koeber-ipads-i-blinde-millioner-47792

http://www.lom.dk 28

Tedre, M. & Denning, P. J. (2016). The Long Quest for Computational

Thinking. Proceedings of the 16th Koli Calling Conference on Computing

Education Research, November 24-27, 2016, Koli, Finland: 120-129.

Undervisningsministeriet (1972). Betænkning om edb-undervisning i det

offentlige uddannelsessystem. Betænkning nr. 666.

Undervisningsministeriet.

Undervisningsministeriet (2018a). Handlingsplan for teknologi i

undervisningen. https://www.stil.dk/-

/media/filer/uvm/udd/fgu/180201-nyhandlingsplan-for-teknologi-i-

undervisningen-februar-2018.pdf?la=da

Undervisningsministeriet (2018b). Indsatsen for øget anvendelse af it i

folkeskolen. https://www.uvm.dk/folkeskolen/laering-og-

laeringsmiljoe/it-i-undervisningen/oeget-anvendelse-af-it-i-folkeskolen

Undervisningsministeriet (2017). Informationsteknologi C og B.

https://www.uvm.dk/gymnasiale-uddannelser/fag-og-

laereplaner/laereplaner-2013/forsoegsfag-i-de-gymnasiale-

uddannelser/permanente-forsoegsfag/informationsteknologi-c-og-b

UNI-C. På forkant i 40 år. Jubilæum 1965-2005.

https://www.yumpu.com/da/document/view/17696419/historisk-

tilbageblik-unioc/5

Wing, J. M. (2006). Computational Thinking. Communications of the ACM,

49(3), 33-35. https://doi.org/10.1145/1118178.1118215

http://www.lom.dk/
https://www.stil.dk/-/media/filer/uvm/udd/fgu/180201-nyhandlingsplan-for-teknologi-i-undervisningen-februar-2018.pdf?la=da
https://www.stil.dk/-/media/filer/uvm/udd/fgu/180201-nyhandlingsplan-for-teknologi-i-undervisningen-februar-2018.pdf?la=da
https://www.stil.dk/-/media/filer/uvm/udd/fgu/180201-nyhandlingsplan-for-teknologi-i-undervisningen-februar-2018.pdf?la=da
https://www.uvm.dk/folkeskolen/laering-og-laeringsmiljoe/it-i-undervisningen/oeget-anvendelse-af-it-i-folkeskolen
https://www.uvm.dk/folkeskolen/laering-og-laeringsmiljoe/it-i-undervisningen/oeget-anvendelse-af-it-i-folkeskolen
https://www.uvm.dk/gymnasiale-uddannelser/fag-og-laereplaner/laereplaner-2013/forsoegsfag-i-de-gymnasiale-uddannelser/permanente-forsoegsfag/informationsteknologi-c-og-b
https://www.uvm.dk/gymnasiale-uddannelser/fag-og-laereplaner/laereplaner-2013/forsoegsfag-i-de-gymnasiale-uddannelser/permanente-forsoegsfag/informationsteknologi-c-og-b
https://www.uvm.dk/gymnasiale-uddannelser/fag-og-laereplaner/laereplaner-2013/forsoegsfag-i-de-gymnasiale-uddannelser/permanente-forsoegsfag/informationsteknologi-c-og-b
https://www.yumpu.com/da/document/view/17696419/historisk-tilbageblik-unioc/5
https://www.yumpu.com/da/document/view/17696419/historisk-tilbageblik-unioc/5
https://doi.org/10.1145/1118178.1118215

http://www.lom.dk 29

Appendix 1. IT in K-9 schools 1966-2018
Year Event Focus

1966 Professor Peter Naur introduces “datalogi” as an alternative Danish term for the
English term computer science. He formulates “datalogi”/datamatics as a cross-
disciplinary tool in line with language teaching and mathematics, and predicts that it
will take a similar position in the educational system.

D
ata ed

u
catio

n

1968 The Danish School of Education (Danmarks Lærerhøjskole) starts computer teaching
for mathematics teachers, focusing on problem-solving.

1970 Allan C. Malmberg, head of the Danish School of Education (Danmarks Lærerhøjskole),
says that teacher training should be taken into account in the development of a
computer capacity in teaching and research in all subjects at a completely different
scale than previously in order not to become a bottleneck for the subject.

1972 In Report No. 666, a committee presents an analysis of data education as an
important subject in K-9 schools.

1973 A committee prepares a draft of teaching instructions for data education.

1975 New school act, but for inexplicable reasons data education has been dropped, so it is
only an elective subject for 10th grade (16 year-olds).

1976 The Data Education Association (Datalæreforeningen) is founded (now known as the
Danish Association of IT Supervisors (Danmarks IT-vejlederforening)).

1976-1986 A wide range of experimental and development work in the area: in subjects, as
subjects, as courses, girls-boys. Funded by the Danish schools’ trials council
(Folkeskolens Forsøgsråd) and the schools’ own initiatives. In 1986 more than 3,000
pages of reports were written in collaboration with the Danish schools’ trials council
(Folkeskolens Forsøgsråd).

1980 In his opening speech in the Danish Parliament in October, Prime Minister Anker
Jørgensen says that “we expect to introduce data education in this parliamentary
year.”

1981 The Educational Council for Danish K-9 schools sets up the Haase Committee to
prepare a report on data education in K-9 schools.

1982 The Haase Committee concludes that data education should be introduced in K-9
schools as an independent subject, but when they are to present their analysis to the
Educational Council, Anker Jørgensen loses his position as prime minister and the
meeting is cancelled. Bertel Haarder becomes the new Minister for Education and
shuts down the Educational Council. The Committee’s report is never published.

1983 Minister for Education, Bertel Haarder, appoints a new committee to continue work
on the plans for data education: description of objectives, teaching supervision and
curriculum for an elective subject, as well as suggestions for how it can be included in
existing courses.

1985 Indicative proposals for a curriculum for the elective subject of data education
published.

1984-1990 Data education offered as an elective course in 8th-10th grades (14-16 year-olds).

1985 The calculation centers at the University of Copenhagen (RECKU) and Aarhus
University (RECAU) are merged and become UNI-C (with the double meaning
"University center" and "unique"). Since then, the teacher training college IT center

http://www.lom.dk/

http://www.lom.dk 30

(SITC) as well as the county and municipal organization ORFEUS have also become
part of UNI-C.

1986 Bertel Haarder’s new committee presents its analysis.

1990-1994 Data education is withdrawn as an elective subject and is changed to a compulsory
section-6 subject in line with road safety and sex education.

O
p

eratio
n

al u
ser co

m
p

eten
cies an

d
 in

frastru
ctu

re

1993 New Danish act on basic education. Minister for Education, Ole Vig Jensen, approves
data education as an elective course for the 8th-9th grade (14-15 year-olds), but data
education is lost from the act as an elective subject and as a compulsory subject. The
comments on section 7 state that “EDP (...) has been withdrawn as a compulsory
subject, as it is assumed that the content will be integrated into the compulsory
subjects for the youngest year groups.”

1993-1994 Denmark’s first internet-based network, Sektornettet, was established with the aim to
connect the entire educational system to the Internet.

1996 PC user certificates are introduced, including a PC user certificate for teachers, and a
couple of years later, a junior PC user certificate for K-9 school students.

The mid-
1990s

Several projects are launched. For example, the Centre for technology-supported
teaching (Center for Teknologistøttet Undervisning) is granted DKK 100 million to
allocate to projects on IT, a toolbox for IT in teaching (Poseidon) is established, and
the schools’ database service (SkoDa) is set up.

2000 Almost all schools and educational institutions are connected to the Internet through
the sector network (Cisco Systems Denmark).

2001 IT and Media in K-9 Schools (ITMF) is launched with a budget of DKK 323 million to
support development projects in a collaboration between schools and researchers,
production of a media library, continuing education for teachers and other minor
initiatives.

P
ro

cu
rem

en
t o

f h
ard

w
are a

n
d

 d
ev

elo
p

m
en

t o
f teach

in
g reso

u
rces.

2003 Common goals (Fælles Mål) replaces Clear goals (Klare Mål).

2004-2008 The Danish Ministry of Education initiates IT in K-9 Schools (ITIF), with a budget of
DKK 750 million, which primarily consists of support to procure computers for 3rd-
grade students (9 year-olds) and to develop six subject-specific digital teaching
resources.

2009 Fælles Mål is revised, and Text Booklet 48, IT and media competences in K-9 schools
is published.

2009 Digital national tests introduced.

2011-2012 City of Copenhagen procures interactive whiteboards for all schools. Municipality of
Odder procures iPads for all teachers and students. Many municipalities follow suit
over subsequent years with large hardware purchases.

2014- Trials with digital examinations in several subjects.

2011-2017 A new initiative is launched: initiative to increase the use of IT in K-9 schools. DKK
500 million from the government and DKK 500 million from municipalities are
earmarked to upgrade broadband at schools and co-finance procurement of digital
learning resources. The project consists of support to procure digital learning
resources, impact measurement of the use of digital teaching resources in schools,

http://www.lom.dk/

http://www.lom.dk 31

establishment of demonstration school pilot projects, development of digital teaching
resources and a teacher network.

2013 UNI-C transfers the Danish internet institutions DiX’en, DK-CERT and the research
network (Forskningsnettet) to DTU as part of a reorganization, in which, with its
position under the Ministry of Children and Education, UNI-C is to focus on IT tasks
associated with this area.

2014 UNI-C changes name to STIL (Agency for IT and Learning) due to the changed focus
on supplying IT solutions for K-9 schools and youth education without a commercial
aim. The most important goal for the agency is to support IT in teaching (solutions),
while procurement and implementation are a municipal task.

2014 New school act with simplified common goals under Minister for Education Christine
Antorini. IT and media introduced as cross-disciplinary themes, and specific academic
IT goals are incorporated into all courses. Text Booklet 48 is withdrawn.

2016 Conclusions from the demonstration school trials suggest that the way IT is
integrated in K-9 schools is traditional and directed by conservative logics – but that
IT has innovative opportunities.

C
o

m
p

u
tatio

n
al th

in
k

in
g an

d
 tech

n
o

lo
gy

co

m
p

reh
en

sio
n

2016 After Professor Jeannette M. Wing reintroduces the concept of computational
thinking, a large number of countries undergo reforms or implement initiatives that
include the integration of computational thinking, including Denmark.

2017 Minister for Education, Merete Riisager initiates the elective subject technology
comprehension for final-year classes as an experiment. Thirteen participating
schools.

2018 The International Computer and Information Literacy Study (ICILS) from the
International Association for the Evaluation of Educational Achievement (IEA) is
expanded to include an evaluation of students’ computational thinking skills (IEA
2018).

2018 Minister for Education, Merete Riisager initiates trials to incorporate the discipline of
technology comprehension in other subjects and as an independent subject at 46
schools over a period of three years.

http://www.lom.dk/

Vol.:(0123456789)

Education Tech Research Dev
https://doi.org/10.1007/s11423-019-09694-z

1 3

CULTURAL AND REGIONAL PERSPECTIVES

Computational thinking in compulsory education: a survey
study on initiatives and conceptions

Elisa Nadire Caeli1  · Jeppe Bundsgaard1 

© Association for Educational Communications and Technology 2019

Abstract
This article communicates the results of a Danish survey study conducted in 2018 that
aimed to examine initiatives relating to computational thinking in primary and lower-sec-
ondary schools, as well as the professional development of teachers and the perceptions of
school principals in this area. The context is an increasing interest in this field, motivated
by a sense that it is important for children to learn computational thinking skills. How-
ever, educators struggle with questions regarding what computational thinking in educa-
tion actually is—and consequently, how they should teach and assess it. In this survey, we
wanted to explore existing practices and current situations to find out what school princi-
pals regard as important; thus, we designed an electronic questionnaire on this topic. 98
principals started the survey, and 83 completed it. Our analysis suggests that many initia-
tives connected to computational thinking are currently being implemented, but according
to the principals taking part, teachers are not trained to teach this subject. The principals
have inclusive views and focus on broad aspects of what computational thinking involves.
According to them, computational thinking is not about pushing students into computing
careers; rather it is about supporting the well-rounded development of human beings in a
free and democratic society. However, the principals do report limited understanding of
this subject, which suggests that teachers are not the only ones in need of training—princi-
pals also need help to develop a culture and mindset around this subject and implement it
efficiently into schools.

Keywords  Computational thinking · Technological understanding · Computing
curriculum · Compulsory education

Introduction

There is increasing interest in the world today in the idea of embedding computational
thinking in primary and secondary education. In Denmark, the Ministry of Education
recently expressed their ambition to establish technological understanding (teknologifor-
ståelse) as a compulsory subject for K-9 students (Undervisningsministeriet 2018b). The

 *	 Elisa Nadire Caeli
	 elisa@edu.au.dk

1	 Danish School of Education, Aarhus University, Tuborgvej 164, 2400 Copenhagen NV, Denmark

http://orcid.org/0000-0002-1233-7589
http://orcid.org/0000-0003-0102-0321
http://crossmark.crossref.org/dialog/?doi=10.1007/s11423-019-09694-z&domain=pdf

	 E. N. Caeli, J. Bundsgaard

1 3

motivation for this move is a sense that all students need to develop computational think-
ing skills to participate fully in the highly digitalized world of today. For a three-year trial
period, the ministry now sponsors various approaches to teaching this subject.

Eleven countries in Europe have recently launched reforms that include the integration
of computational thinking into compulsory education, and more are planning to do the
same (Bocconi et al. 2016). In the US, leading educational organizations such as the Com-
puter Science Teachers Association (CSTA), and the International Society for Technology
in Education (ISTE) have argued for the need to expose students to computational think-
ing ideas, and computational thinking is included in the Next Generation Science Stand-
ards (NGSS 2013). For example, ISTE wants students to “develop and employ strategies
for understanding and solving problems in ways that leverage the power of technological
methods to develop and test solutions” as part of “enabling them to engage and thrive in a
connected, digital world” (ISTE 2016).

In a review published in 2013, Grover and Pea framed the current state of discourse
on computational thinking in K-12 and found a number of elements that were “widely
accepted as comprising CT and form the basis of curricula that aim to support its learn-
ing as well as assess its development” (Grover and Pea 2013). These include abstractions
and pattern generalizations (including models and simulations); systematic processing of
information; symbol systems and representations; algorithmic notions of flow of control;
structured problem decomposition (modularizing); iterative, recursive, and parallel think-
ing; conditional logic; efficiency and performance constraints; and debugging and system-
atic error detection.

But technology and automation are changing rapidly, and we need to keep examining
shifting views and priorities in K-12. In addition, despite increased attention and a variety
of curriculum designs and other initiatives, there is still little common understanding of
what computational thinking is, how it should be taught, and how it can be assessed. By
emphasizing the importance of programming, the current movement and definitions have
produced narrow conceptions that have led to less ambitious versions of computational
thinking than in the past, and to unsubstantiated claims of what it is good for (Denning
2017; Tedre and Denning 2016).

Historical perspectives regarding computer science education

Pioneers of computer science have been discussing the power of computational thinking
for decades, stressing the value of teaching fundamental computing principles from early
primary school. To identify precursors of computational thinking in Danish education, we
examined how different types of discussions of computing in schools have been carried
out in Denmark since the middle of the 1960s (Caeli and Bundsgaard 2019). It is interest-
ing to note that current discussions on this topic were also present in the past, though with
different emphasis. In Denmark, for instance, Professor Naur (1966, 1968, 1992) has dis-
cussed the need for students of all ages to be able to think critically about how computers
influence life and society. He proposed a subject for compulsory education that involved
not only the programming of computers, but also other skills and competences, such as
computational designs and understanding algorithms. Additionally, pioneers back in the
1960s and 1970s argued for the importance of training pre-service and in-service teach-
ers to teach such competences. They foresaw a risk that the failure to train teachers in this
way would make it harder to implement computing initiatives in schools (Malmberg 1970;
Undervisningsministeriet 1972).

Computational thinking in compulsory education: a survey study…

1 3

For policy-related reasons, datalogy (computer science) was never implemented in the
curriculum. During the 1990s, the focus changed towards a more user-oriented perspective
and lower-level skills. For example students being able to use computer functions such as
how to turn on and off the machine, how to save work, and how to use functions in word
processors or spreadsheets. Decision makers in education focused on developing computer
labs with a powerful infrastructure. During the 2000s, municipalities were occupied with
buying hardware, especially interactive whiteboards and tablets. However, teachers were
not educated in integrating these devices into teaching practices, and many questions about
their relevant, meaningful use were raised and discussed.

Computational thinking and curriculum design in Denmark

This new period of computational thinking and technological understanding has been
emerging worldwide, although it is based on a new and rather narrow conception of what
computational thinking involves (Denning 2017). The proposed curriculum design in Den-
mark seems to take into account more inclusive views regarding which computing princi-
ples are relevant for children to learn today. Specifically, the Danish experimental subject
of technological understanding aims to develop competences within four areas:

•	 Digital empowerment: the ability to analyze technologies and their purposes, examine
their use, and assess their consequences.

•	 Digital design and design processes: framing, generating ideas, constructing, and
assessing digital designs.

•	 Computational thinking: knowledge of data, algorithms, structuring, and modeling.
•	 Technological capability: capability with regard to computer systems, networks, pro-

gramming, and security (EMU 2019).

As such, technological understanding focuses not only on formal programming skills,
closed-ended solutions, and concepts related to math, but also on design and engineering
skills as well as critical understanding.

This probably reflects the formal aims of the Danish Folkeskole, as stated by the Danish
government, concerning promoting the well-rounded development of the students. Specifi-
cally, and among other things, the aim of the Folkeskole is:

to prepare the students to be able to participate, demonstrate mutual responsibility
and understand their rights and duties in a free and democratic society. The daily
activities of the school must, therefore, be conducted in a spirit of intellectual free-
dom, equality and democracy (Undervisningsministeriet 2018a).

There are no formal training courses for teachers when it comes to teaching this new
subject. Therefore, we hypothesized challenges in teaching computational thinking skills.
Recent school reforms have downsized the amount of preparation time allowed to Danish
teachers, which might have left teachers with insufficient time to become competent and
confident with the content and teaching of this new subject. This lack of preparation time
has been discussed a great deal, being regarded as one of several factors that might have
caused an increasing number of teachers to experience stress owing to high pressure (see
for example Schäfer 2018.).

	 E. N. Caeli, J. Bundsgaard

1 3

Purpose of this study

In the following, we present the results of a survey study, conducted and analyzed in 2018.
The purpose of the study was:

•	 to identify the types of technology initiatives involving computational thinking existing
in Danish schools today and their frequency.

•	 to examine Danish principals’ perceptions as to whether teachers have the requisite pro-
fessional skills to teach this subject.

•	 to analyze the ideas of Danish school principals regarding computational thinking, for
example whether they find it relevant in compulsory education, and what challenges
they anticipate in terms of embedding it in school practices.

Other surveys have looked into teachers’ conceptions of computational thinking. For
example, a survey study measured the attitudes of pre-service teachers and examined how
introducing computational thinking into training courses could influence the understand-
ing of pre-service teachers regarding computational thinking (Yadav et al. 2014). Another
study measured the understanding of in-service teachers regarding computational ideas for
teaching science and examined how the ideas of computational thinking could be embed-
ded within elementary subjects (Yadav et al. 2018).

Danish primary/lower‑secondary school and school administration

Denmark has 10 years of compulsory education, which is called the grundskole (kin-
dergarten, primary and lower-secondary school, grades 0–9). Most schools are public
(folkeskoler, owned by the municipalities), but around a fifth of the students go to private
schools (religious, Freinet, Waldorff, etc.). Schools are administered by a principal, a vice-
principal, and heads of departments (for example, a head of department for grades 1–3,
grades 4–6, and grades 7–9 respectively). The Danish Ministry of Education stresses that
the school administration is of great importance for students’ learning (Undervisningsmin-
isteriet 2015), and the Danish Union of Teachers (DLF) emphasizes that the Folkeskole
plays a pivotal role in the development of Danish democracy, communication and develop-
ment of culture and opinions, and socialization and development of common values (DLF
n.d.).

As part of the latest school reform, a number of Danish parties agreed to improve stand-
ards in the Folkeskole to “maintain and develop the public school’s strengths and academic
standards”. In order to fulfil their goals, they concluded that “an enhanced professional
development of teachers, pedagogical staff and school principals” was necessary (Under-
visningsministeriet 2013).

The Danish Evaluation Institute EVA (2015) identified four elements of effective school
administration with the purpose of developing learning opportunities for all: facilitate
learning processes and school direction; develop a professional culture and build up trust;
support employees during changes; and include both experienced and research-based work.

Teachers’ understanding and preparedness are essential when introducing and develop-
ing a new subject; however, principals also play a central role in ensuring the success of
such initiatives. Hence, in our study we decided to measure the ideas of principals in order
to examine the way computational thinking is taught in schools more broadly and the way
in which principals support such initiatives.

Computational thinking in compulsory education: a survey study…

1 3

Method

Research design

The study was designed as a survey based on an electronic questionnaire (“Appendix”)
which was sent to the principals of K-9 schools.

It consisted of three parts with closed-ended single and multiple-choice questions:

•	 Part 1: Technology initiatives in schools (1–2 questions)
•	 Part 2: Teachers’ professional development (1–2 questions)
•	 Part 3: Conceptions of computational thinking (6 questions)

Part three of our survey mainly consisted of four-point Likert scale questions (Strongly
Agree, Agree, Disagree, and Strongly Disagree) to measure how much principals agreed or
disagreed with various statements. We chose a forced opinion scale with no neutral option
to make respondents less likely to make fake and faster responses by choosing the unde-
cided alternative.

Research questions

To measure the extent to which Danish schools focus on computational thinking, we asked
principals about current and planned learning activities in terms of teaching computing ini-
tiatives to students, and the extent to which their teachers had the professional skills needed
to teach such initiatives.

In addition, to capture different conceptions of computational thinking definitions and
different arguments for embedding it into curriculum, we examined participants’ ideas
about what computational thinking involves and why it is an important skill for students
to develop. The options in this section were designed to cover the most commonly heard
arguments. Specifically, policy documents, research articles and debates regarding the idea
of teaching computer science to everyone have informed our statements.

In particular, we wanted to study:

•	 Question 1: To what extent do Danish K-9 schools offer specific technology initiatives
or subjects that involve computational thinking?

•	 Question 2: To what extent are their Danish teachers trained to teach computational
thinking from the perspectives of Danish principals?

•	 Question 3: To what extent are Danish principals familiar with computational thinking;
and what are their perspectives on embedding it in compulsory education?

To assess possible problems or obstacles in our survey, we asked four pilot principals to
pre-test our questionnaire and give feedback on its clarity and length, as well as sharing all
the comments that occurred to them during testing. We adjusted our final version to incor-
porate their comments.

One principal thought that it would be good to add a question on familiarity to find out
whether answers were based on guessing or some degree of knowledge. This made us add
question 3. To what extent are you familiar with the term computational thinking? (see
“Appendix”) as an important part of the survey.

	 E. N. Caeli, J. Bundsgaard

1 3

Another principal suggested adding more options to question 1A. What type(s) of spe-
cific technology initiatives is your school offering in the 2017/2018 academic year? For
example, at his school, students worked with robots and he needed an option for this ini-
tiative. Similarly, he thought it would be good to distinguish between Technology training
integrated in one or more subjects and Another optional subject/specific technology course.
We adjusted question 1A according to his comments.

Data collection and participants

The study was a Danish supplement to the International Computer and Information Lit-
eracy Study (ICILS). By means of systematic and random stratified cluster sampling, 145
participants were randomly selected to represent Danish schools with grade-eight students.1

We specifically asked principals, and not for instance teachers, to capture the overall
initiatives and preparedness of schools with regard to embedding computational think-
ing into their practice. In addition, we asked them about their knowledge and perceptions
regarding computational thinking, as we consider their views important when it comes to
implementing computational thinking in the culture and daily practices of their schools.

The survey was distributed electronically on January 30, and data was collected until
February 25, 2018. 145 people received the questionnaire (97 men and 48 women). 98
respondents started the survey (68% participation), and 83 completed it (a dropout rate
of 15%) (see Table 1). The participants who completed the survey included principals
from all Danish regions with no significant differences in terms of gender, school size, or
achievement scores.

We used the information completed on incomplete questionnaires in our data analysis
below.

Data analysis and results

In the following, we report data on frequencies and correlations by analyzing each part of
the questionnaire individually and summarizing our conclusions.

Technology initiatives in schools

In the first part of the questionnaire, we asked principals whether their school offered any
specific technology initiatives, either integrated into existing subjects or in the form of sep-
arate courses or subjects, in the 2017/2018 academic year.

Table 1   Number of principals responding

Italics indicates that it depended on the previous answer whether questions 1A and 2A were given or not

Q1 Q1A Q2 Q2A Q3 Q4 Q5 Q6 Q7 Q8
N = 98 N = 62 N = 94 N = 76 N = 89 N = 87 N = 87 N = 84 N = 84 N = 83
Part 1: Initiatives Part 2: Teacher PD Part 3: Principals’ conceptions

1  The sampling method is specified in Jung and Carstens (2013).

Computational thinking in compulsory education: a survey study…

1 3

98 responded to the question, with 62% offering one or more technology initiative and
37%2 not offering any (Fig. 1).

We asked principals about technology initiatives, and not explicitly computational
thinking, because the term “computational thinking” has not yet been embedded into the
school curriculum. For example, as stated in our introduction, Denning (2017) argues that
teachers struggle to understand what computational thinking is, and we hypothesized that
a number of principals would either have little knowledge of the concept or would not have
heard of it yet.

Instead, as a next step we examined the content of these initiatives to identify indicators
of possible computational thinking content. We asked principals who said they had one or
more specific technology initiative about the type of initiatives their school offered in the
2017/2018 academic year.

The different types of initiatives were selected by examining main technology initiatives
in Danish K-9 schools3 (Technological Understanding, FabLab@SCHOOLdk, and Coding
Class). Subsequently, we added options regarding other initiatives that focused on different
aspects of technology in education, in particular those which we believed might involve
computational thinking (such as robotics, programming, and digital design/fabrication). 62
respondents answered this question (Fig. 2).

Most schools with technology initiatives offered initiatives which we had not mentioned
as a specific option (80%), or had technology initiatives integrated into one or more sub-
jects (70%).

We asked participants to specify what these initiatives encompassed. Their answers
included Unity Coding, game design, makerspace, digital fabrication and design think-
ing, e-sports, media literacy, information technology, Appwriter (for dyslexics), and

Fig. 1   Technology initiatives in the 2017/2018 academic year (Texts and sentences are shortened in Figs. 1,
2, 3, 4, 5, 6, 7, 8, 9, 10. The full text is available in “Appendix”)

Fig. 2   Types of IT initiatives in the 2017/2018 academic year

2  The figures have been rounded off, so the total is not always 100%.
3  Danish compulsory education.

	 E. N. Caeli, J. Bundsgaard

1 3

digital music production. Integrated technology initiatives included Lego Wedo, Lego
Mindstorms, Lego Education, math coding, coding, Raspberry Pi, common tools (Google
docs, GeoGebra etc.), gaming, Kubo, drones, Beebots, and various aspects of technological
understanding.

These results indicate that some of the principals had rather diverse understandings of a
“specific technology initiative”. In our understanding, common computerized tools such as
Google Docs or GeoGebra, as well as specific technologies to support students with dys-
lexia (for instance), do not constitute specific initiatives unless the technology in itself was
the primary focus.

Analysis and conclusions regarding technology initiatives in schools

Our conclusion regarding this first part of the study is that a large number of schools have
integrated technology into their teaching (62%). A closer look at specific initiatives sug-
gests that several focus on programming, and some on design.

A comparison of our data to the formal aims of the upcoming subject known as “techno-
logical understanding” (see introduction) indicates that according to the principals, current
initiatives seemed to prioritize some competence areas over others, specifically those relat-
ing to digital designs and technological capability. What is not clear, however, is whether
digital empowerment and computational thinking principles are embedded in these initia-
tives, even though they may not be the primary focus.

Teachers’ professional development (PD)

In the second part of the questionnaire, we initially examined the number of teachers who
according to the principals had undergone teacher training courses to teach technology ini-
tiatives in the classroom (Fig. 3). 94 responded to the question.

The principals reported that 15% of the schools did not have any teachers with profes-
sional development in this area. In many of the remaining 86% of the schools, the princi-
pals reported that only 1–25% of their teachers had been engaged in professional develop-
ment (44%); whereas in 42% of the schools, the principals said 26% or more had done so.

Furthermore, we wanted to explore what kind of skills the teachers actually possessed,
so we asked the principals who said that at least one of their teachers had been engaged
in professional development. We identified nine different types of courses in the field of

Fig. 3   Teachers’ PD in teaching technology initiatives

Computational thinking in compulsory education: a survey study…

1 3

computer science education and didactics4 (Fig. 4, see full version in “Appendix”), and
presented them to the principals in a randomized order.

The principals reported that teachers were mostly trained to use specific software for
education (37% courses with a strong focus) and in didactic approaches to the use of tech-
nology (36% with a strong focus on subject-specific didactic approaches and 34% with a
strong focus on general didactic approaches). In addition, they had been trained to teach
critical and social online competences (responsible participation—36% and critical use—
33%). There seemed to be less focus on teachers’ digital skills in using specific digital
devices for education (29%) and on common digital skills (12%). 16% of the courses
focused strongly on general didactic approaches to teaching twenty-first century skills, and
only 14% were trained to teach students productive skills.

Analysis and conclusions regarding teachers’ skills

According to the principals, 62% of the schools in our survey offered one or more technol-
ogy initiative; therefore, the number of teachers who engaged in professional development
to teach these initiatives in schools is relatively small.

We do not know whether the teachers who teach these initiatives are the ones who have
the requisite training, and there is a risk that the principals did not know whether individual
teachers had recently attended training courses, for example online training on their own.
This analysis focuses on how many teachers were engaged in professional development,
and there is no guarantee that the professional development of teachers leads to the acquisi-
tion of skills.

The fact that the principals report that many teachers were trained to use specific tech-
nologies might reflect an aspiration that teachers should use the hardware in which Den-
mark has invested so much money. We regard the focus on didactics—and not on tech-
nology alone—as positive. This might follow from heavy debates on the importance of
pedagogical aspects as drivers of education and not technology. Furthermore, the focus
on the importance of knowing how to teach critical and social online competences might
be due to worldwide debates on children’s participation in social media and a focus on
the sweeping presence of fake news. The fact that teachers (according to the principals)

Fig. 4   Teachers’ PD focus

4  In this article, the term didactics is based on Nordic educational traditions, defined as knowledge and
skills relating to teaching processes, e.g. professional factors concerning learning intentions, students’
learning process, settings, conditions, content, and assessment. We distinguish between general and subject-
specific didactics.

	 E. N. Caeli, J. Bundsgaard

1 3

were not trained to use specific digital devices or to develop common digital skills may be
due to the fact that most people today already possess such low-level functional skills. The
absence of focus on training teachers to teach students productive skills conflicts with the
fact that many of the technological initiatives that have been launched focus on production
in terms of programming and design.

Conceptions of computational thinking

While the first and second parts of the questionnaire addressed initiatives related to
technology initiatives in education more broadly, this last part concentrated on com-
putational thinking. Specifically, it addressed the ideas of school principals regarding
computational thinking within the six categories: Familiarity, Definition, Importance,
Relevance, Challenges, and Advantages. In the following, we present data from these
six categories individually and sum up with an analysis and conclusions.

Familiarity

To assess principals’ knowledge of computational thinking, we asked to what extent
they were familiar with the term (Fig. 5).

27% had never heard of computational thinking, whereas 73% had various degrees
of knowledge of the term. Specifically, 55% reported that their knowledge was limited,
11% felt they had some degree of knowledge, and 7% thought they had a good sense of
what computational thinking involved.

The following results regarding Definition, Relevance, Challenges, and Advantages,
were derived from the principals who thought that they had at least some degree of
familiarity with the term. We reasoned that if the principals were not familiar with the
term “computational thinking”, their responses to subsequent questions could not be
valid.

Definition

We asked principals whether they agreed or disagreed with eight different statements about
what computational thinking involved (Fig. 6).5 The results are presented below, with the
highest degree of agreement on the left and the highest degree of disagreement on the
right. While blue and green colors represent agreement with the statement, orange and red

Fig. 5   Principals’ familiarity with CT

5  Questions related to Figs. 6, 8, 9 and 10 were all given in a randomized order of the items on a four-point
Likert scale: Strongly Agree, Agree, Disagree, and Strongly Disagree.

Computational thinking in compulsory education: a survey study…

1 3

represent disagreement. Thus, we combine the Strongly Agree and Agree totals, categoriz-
ing them as “agreed”; and we combine the Strongly Disagree and Disagree totals, catego-
rizing them as “disagreed”.

In general, the answers were characterized by a high degree of agreement. The point on
which there was most agreement was that computational thinking involves solving prob-
lems systematically (94%), while most of the principals (58%) disagreed that computa-
tional thinking is the same as programming and coding.

Three categories are evident: the principals agreed the least on computational thinking
as being equal to basic technical skills and knowledge (the same as programming/coding
and knowledge of computers). Moreover, they agreed less on subject-specific definitions
(understand/develop algorithms, using computers to solve problems more easily and work
with data) than on definitions including more demanding mental skills such as critical
thinking and problem-solving approaches (general principles of problem solving, critical
considerations and solve problems systematically).

Importance

Secondly, we wanted to find out whether principals think that students in compulsory
education should be taught computational thinking as a separate subject, taught as part of
existing subjects, or not taught at all. In our analysis, we differentiated between principals
with knowledge of computational thinking and principals who have never heard of compu-
tational thinking (Fig. 7).

The general picture is the same whatever degree of knowledge principals have: most of
the principals thought that computational thinking should only be integrated into existing
subjects and not offered as a stand-alone subject. However, principals who had knowledge of

Fig. 6   Principals’ definition of CT [In Figs. 6, 8, 9 and 10, the answers are sorted in an increasing order
ranging from the bottom (disagree and strongly disagree) to the top (agree and strongly agree).]

Fig. 7   Principals’ views on the importance of teaching CT as a subject or not

	 E. N. Caeli, J. Bundsgaard

1 3

computational thinking tended to have a more positive attitude towards a subject: 19% with
knowledge were positive compared to only 10% without knowledge.

Relevance

To elaborate on their thinking, we asked principals to respond to eight different statements about
the relevance of teaching computational thinking in compulsory education, asking whether they
agreed or disagreed with these statements (Fig. 8).

Most of the principals disagreed that computational thinking only prepares students for
future work (97%) as well as disagreeing that students are already digitally Gebildet6 when they
start school thanks to their experience of digital devices in pre-school (87%). Furthermore, prin-
cipals regarded computational thinking as more than just being able to handle and use a digital
device—students should, for example, also understand the principles of data (98%). Most of the
principals disagreed that computational thinking should only be an elective for those interested
in the field (81%).

The last five statements all generated a considerable degree of agreement, suggesting that the
principals had broad views on what computational thinking is good for. They regarded compu-
tational thinking as being as important as reading, writing and math skills (69%). They agreed
that the future job market has a need for more digitally skilled employers (85%). They thought
compulsory education should introduce the principles of data in order to understand and act in
an increasingly digitalized everyday life (98%). They regarded computational thinking as an
important part of the students’ digital Bildung (98%). And they regarded teachers as important
in helping children to understand the threats and potentials of technology (98%).

Challenges

Earlier research, debates and history within the field strongly demonstrate that teaching
computational thinking and computer science in school settings is challenging. As a result,

Fig. 8   Principals’ attitudes towards the relevance of teaching CT

6  Verb used to describe a person with Bildung. Bildung (a German word, in Danish: dannelse) is a holistic
and humanistic approach to public education and its content which has long-standing traditions in Danish
and other Nordic countries. In our view, it encompasses the individual, social and cultural development of
the whole child, which is reflected in the legislation relating to what the Folkeskole should be concerned
with (e.g. students developing into active citizens with social competences and the ability to understand and
take part in the democratic processes as well as their individual overall development as human beings).

Computational thinking in compulsory education: a survey study…

1 3

we wanted principals to specify what they found challenging in implementing computa-
tional thinking based on six different statements (Fig. 9).

It is interesting, though from a Danish perspective not surprising, that most schools accord-
ing to the principals have a sufficient infrastructure (65%). More than half of the principals
reported the following: practical problems take up too much time (58%), teachers are uncom-
fortable teaching technology initiatives (68%), teachers do not have the time to learn about com-
putational thinking themselves (69%), there are not enough resources for teacher professional
development (84%), and teacher training courses do not prepare teachers to teach technology
initiatives (89%).

Advantages

We also we wanted to examine principals’ views on the possible advantages of imple-
menting computational thinking in compulsory education. So we asked the principals to
respond to seven different statements (Fig. 10).

Our results indicate that the principals held a comprehensive view on the potential advan-
tages of teaching computational thinking. A majority of the respondents agreed on all seven
arguments: 1. Computational thinking gives students a better foundation for acting and partic-
ipating in a democratic society (69%); 2. Computational thinking provides students valuable
knowledge about their rights in an increasingly digitalized society (75%); 3. Computational
thinking allows students to get better jobs (84%); 4. Computational thinking offers students val-
uable skills in using digital devices (87%); 5. Computational thinking gives students the chance
to address problem-solving in more appropriate ways (92%); 6. Computational thinking pre-
sents students with the necessary knowledge and understanding of an increasingly digitalized
society (98%); and 7. Computational thinking promotes students’ digital Bildung (100%).

Fig. 9   Principals’ view on potential challenges of teaching CT

Fig. 10   Principals’ view on potential advantages of teaching CT

	 E. N. Caeli, J. Bundsgaard

1 3

Analysis and conclusions regarding conceptions of computational thinking

Our results suggest that the principals taking part regarded computational thinking as a broad
and deep skill. It means more than the use of computers and the formal act of writing code.
These findings are interesting in comparison with the worldwide focus on programming
environments.

The fact that the principals were not in favor of teaching computational thinking as a sepa-
rate subject is both interesting and controversial, given that the Ministry of Education intends
to teach all students computational thinking as part of technological understanding, and in the
light of the fact that automated information processes are so pervasive in the world in which we
need to prepare children to live. This might reflect principals’ self-assessed limited knowledge
on computational thinking as well as their broad views on computational thinking as a subject
with cross-curricula benefits.

However, the attitudes of the principals taking part with regard to the relevance of computa-
tional thinking suggest an inclusive view on what computational thinking is and what it is good
for. For example, they did not think of children as digitally Gebildet before school, and deemed
it to be important that all children should develop computational thinking skills. Many debates
in Danish media have centered on this topic, and on why children are not digitally Gebildet even
though they are almost born with a tablet in their hands and a smartphone in their pockets. Our
findings indicate that this focus has resulted in a common understanding that digital Bildung
requires education.

Most of the principals taking part disagreed with the idea that computational thinking should
be an elective for only those interested in the field. This is not surprising, given that most prin-
cipals thought that computational thinking should either be taught as a separate subject or be
embedded in existing subjects.

With regard to the relevance of teaching computational thinking in compulsory education
(Fig. 8), there was general agreement in two areas: functionalistic advantages for education/job
market (important as reading, writing and math and digitally skilled employers), and general
advantages for Bildung (understand principles of data in a digitalized everyday life and digital
Bildung). It is interesting that there was a tendency towards greater agreement on the potential
of Bildung (98 and 99%) than on job and education possibilities (69 and 85%).

With regard to advantages, the same trends appear again: general advantages for Bildung
(understanding of our society and digital Bildung) as well as functionalistic advantages for edu-
cation/job market (better job opportunities and valuable skills). As with the arguments relating
to relevance, there was a tendency towards greater agreement about the potential of Bildung (98
and 100%) than on job and education possibilities (84 and 87%).

These findings might reflect traditions and cultural values illustrated in the formal aims of
Danish compulsory education as presented in our introduction, for example a well-rounded
development. However, there was an imbalance in terms of how principals assessed the impor-
tance of Bildung when compared with the importance of education and the job market, with a
tendency to regard Bildung as more important than future education and work.

In our data regarding relevance, there was considerable agreement regarding the importance
of teachers supporting children’s learning process. However, the principals taking part also
agreed that this is the most challenging area. The resources allocated to professional develop-
ment are insufficient, and teachers are not adequately trained in this field. The principals also
regarded technology initiatives as too time-consuming, both in terms of practical problems
and in terms of their own familiarity with what computational thinking involves. This possibly
reflects the fact that teachers are not trained to teach this subject, as well as recent reforms that

Computational thinking in compulsory education: a survey study…

1 3

downsized the amount of teachers’ preparation time. Consequently, with not enough time or
energy to do tasks you are already familiar with, it becomes even more difficult to develop the
pedagogical and subject-specific competences needed to teach a new domain.

In our historical review of computational thinking in public education, briefly summarized
in the introduction of this article, we found that municipalities spent hundreds of millions Dan-
ish kroner on hardware and infrastructure during the 1990s and 2000s (Caeli and Bundsgaard
2019). So it is not surprising that principals do not regard satisfactory infrastructures as a chal-
lenge. This foundation is advantageous to now allocate our resources on didactics and pedagogy.

Discussion

The aim of this study was to examine initiatives regarding computational thinking in compul-
sory education (primary and lower-secondary school) as perceived by principals. Specifically,
we wanted to identify the types of technology initiatives involving computational thinking exist-
ing in Danish schools today and their frequency; examine principals’ perceptions of whether
teachers have the requisite professional skills to teach this subject; and analyze the ideas of
school principals regarding computational thinking. (For example whether principals found
computational thinking relevant in compulsory education, and what challenges they anticipated
in terms of embedding it in school practices).

The context of the study is an increasing interest in computational thinking in school set-
tings, motivated by a sense that it is important that children learn more in this area. However,
educators struggle with questions about what computational thinking in education really is—
and consequently, how we should teach and assess it.

This survey was the first part of a larger-scale research study that aims to suggest answers to
these questions. In this part, we wanted to look at existing practices and what school principals
think about this field—both with a view to setting the scene by exploring the current situa-
tion, and with a view to bringing practitioners’ ideas to the fore: What do principals regard as
important?

In general, the principals taking part had inclusive views on what computational thinking
involves. The idea that computational thinking is the same as programming attracted the least
level of agreement, which is interesting given the high focus worldwide on programming. This
indicates that a Danish view might differ from international trends because it focuses on broader
aspects of computer science with the overall term “technological understanding”, which also
encompasses competences with regard to designing systems, modeling and analyzing among
other things.

Our results reflect long-standing Nordic traditions about what compulsory education is
about. Computational thinking is not about pushing students into computing careers; rather it
is about supporting the well-rounded development of human beings in a free and democratic
society. Students are not digitally Gebildet when they enter school, and education is important.

Consequently, the professional development of teachers is necessary. This is not only
revealed in our survey, but also seems to be regarded as a challenge worldwide across multiple
computer science approaches and curricula. For example, Yadav et al. (2017) emphasized the
challenge that few teacher-training institutions offer programs specifically for computer science
teachers, and that there is a limited understanding of how to engage pre-service teachers from
other subject areas in computer science and computational thinking.

The participants in our study were principals, and most of them reported that they had lim-
ited knowledge of what computational thinking really is. So we cannot develop definitions on
computational thinking from their answers alone, nor was this the purpose of the study. Their

	 E. N. Caeli, J. Bundsgaard

1 3

limited understanding suggests that teachers are not the only ones in need of training—prin-
cipals also need help to develop a culture and mindset around this subject and implement it
efficiently into schools.

One limitation of this study is that the only thing we examined was the views of principals. For
example, they might not know whether teachers had attended training courses, or they might lack
understanding of the specific content of the professional development of their teachers. In addi-
tion, we cannot know whether professional development leads to the acquisition of competences.

To examine conceptions of computational thinking and its relevance more deeply more
research is needed. As such, while in this study we surveyed principals with a view to gain an idea
of the culture of computer science education in schools more broadly, in-service teachers as well
as pre-service teachers could be surveyed next to examine their conceptions of this subject and
how well they feel they are prepared to teach it.

Another good place to learn and look for answers is in the traditions and history of both com-
puter science education and pedagogy, as well as in society today. Future parts of our studies aim
to look into this.

Moreover, it would be interesting to measure the consistency of our analysis of Danish views
on computer science education in terms of any differences compared with international perspec-
tives, for example by surveying principals in other countries on this topic. Different mindsets and
traditions could open up discussions on what computer science for all in a connected world should
really be about.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of interest.

Ethical approval  All procedures performed in studies involving human participants were in accordance with the
ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and
its later amendments or comparable ethical standards.

Informed consent  Informed consent was obtained from all individual participants included in the study.

Appendix: Questionnaire7

Introduction

Study of the focus of Danish schools on computational thinking

We would like to ask for your help in answering 8–10 questions regarding your school’s
focus on computational thinking. The questionnaire is the first step of a research project
linked to ICILS 2018, which aims to gain a deeper understanding of the ICILS results.

Thank you very much for your time and help!

7  This is a translation of the original Danish version of the questionnaire.

Computational thinking in compulsory education: a survey study…

1 3

Part I: Technology initiatives in your school

	 E. N. Caeli, J. Bundsgaard

1 3

Part II: Teachers’ professional development

Computational thinking in compulsory education: a survey study…

1 3

Part III: Your conceptions of computational thinking

	 E. N. Caeli, J. Bundsgaard

1 3

Computational thinking in compulsory education: a survey study…

1 3

	 E. N. Caeli, J. Bundsgaard

1 3

References

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing Computational
Thinking in Compulsory Education - Implications for policy and practice. Joint Research Center,
European Commission. https​://doi.org/10.2791/79215​8.

Caeli, E. N., & Bundsgaard, J. (2019). Datalogisk tænkning og teknologiforståelse i folkeskolen tur-retur.
Tidsskriftet Læring Og Medier (LOM). https​://doi.org/10.7146/lom.v11i1​9.11091​9.

Denning, P. J. (2017). Viewpoint. Remaining trouble spots with computational thinking. Communications of
the ACM, 60(6), 33–39. https​://doi.org/10.1145/29984​38.

DLF (n.d.). The school of the community. http://eng.uvm.dk/prima​ry-and-lower​-secon​dary-educa​tion/the-
folke​skole​/about​-the-folke​skole​.

EMU (2019). Teknologiforståelse. https​://www.emu.dk/grund​skole​/tekno​logif​orsta​else.
EVA (2015). 4 elementer i god skoleledelse. https​://www.eva.dk/grund​skole​/4-eleme​nter-skole​ledel​se.
Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educa-

tional Researcher, 42(1), 38–43. https​://doi.org/10.3102/00131​89X12​46305​1.
ISTE (2016). ISTE standards for students. https​://id.iste.org/docs/Stand​ards-Resou​rces/iste-stand​ards_stude​

nts-2016_one-sheet​_final​.pdf?sfvrs​n=0.23432​94877​98363​27.
Jung, M., & Carstens, R. (eds.) (2013). International Computer and Information Literacy Study. ICILS 2013

User Guide for the International Database. IEA Secretariat.
Malmberg, A. C. (1970). Datalogi i skolen: Læreruddannelsen—en flaskehals. Uddannelse: Undervisn-

ingsministeriets tidsskrift. Årg., 3, 72–76.
Naur, P. (1966). Datalogi og datamatik og deres placering i uddannelsen. Magisterbladet, 15. maj 1966.
Naur, P. (1968). Demokrati i datamatiseringens tidsalder. Kriterium, 3(5). Nyt Nordisk Forlag Arnold

Busck.
Naur, P. (1992). Computing: A Human Activity. New York: ACM Press.
NGSS States. (2013). Next generation science standards: For states, by states. Washington, DC: National

Academies Press.
Schäfer, M. V. (2018). Ny undersøgelse: Hver fjerde lærer føler sig stresset. Folkeskolen.dk. https​://www.

folke​skole​n.dk/62447​2/ny-under​soege​lse-hver-fjerd​e-laere​r-foele​r-sig-stres​set.
Tedre, M., & Denning, P. J. (2016). The Long Quest for Computational Thinking. Proceedings of the 16th

Koli Calling Conference on Computing Education Research, November 24–27, 2016, Koli, pp. 120–
129. https​://doi.org/10.1145/29995​41.29995​42.

Undervisningsministeriet. (1972). Betænkning om EDB-undervisning (p. 666). Betænkning nr: Det offen-
tlige uddannelsessystem.

Undervisningsministeriet (2013). Agreement between the Danish Government (the Social Democrats, the
Social-Liberal Party and the Socialist People’s Party), the Liberal Party of Denmark and the Dan-
ish People’s Party on an improvement of standards in the Danish public school (primary and lower
secondary education). http://eng.uvm.dk/-/media​/filer​/enguv​m/enguv​m/pdf/13/13100​7-folke​skole​refor​
mafta​le-eng-red–2-.pdf?la=en.

Undervisningsministeriet (2015). Ledelse af den nye folkeskole. Syv ledelsesfelter til skoleledelser og for-
valtninger. https​://arkiv​.emu.dk/sites​/defau​lt/files​/UVM%20Sko​leled​else_WEB.pdf.

Undervisningsministeriet (2018a). The Aims of the Folkeskole. http://eng.uvm.dk/prima​ry-and-lower​-secon​
dary-educa​tion/the-folke​skole​/the-aims-of-the-folke​skole​.

Undervisningsministeriet (2018b). Undervisningsministeren vil gøre teknologiforståelse obligatorisk i
folkeskolen. https​://uvm.dk/aktue​lt/nyhed​er/uvm/2018/jan/18012​6-under​visni​ngsmi​niste​ren-vil-goere​
-tekno​logif​orsta​aelse​-oblig​atori​sk-i-folke​skole​n.

Yadav, A., Krist, C., Good, J., & Caeli, E. N. (2018). Computational thinking in elementary classrooms:
measuring teacher understanding of computational ideas for teaching science. Computer Science Edu-
cation, 28(4), 371–400. https​://doi.org/10.1080/08993​408.2018.15605​50.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in ele-
mentary and secondary teacher education. ACM Transactions on Computing Education. https​://doi.
org/10.1145/25768​72.

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational thinking for teacher education. Communica-
tions of the ACM, 60(4), 55–62. https​://doi.org/10.1145/29945​91.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.2791/792158
https://doi.org/10.7146/lom.v11i19.110919
https://doi.org/10.1145/2998438
http://eng.uvm.dk/primary-and-lower-secondary-education/the-folkeskole/about-the-folkeskole
http://eng.uvm.dk/primary-and-lower-secondary-education/the-folkeskole/about-the-folkeskole
https://www.emu.dk/grundskole/teknologiforstaelse
https://www.eva.dk/grundskole/4-elementer-skoleledelse
https://doi.org/10.3102/0013189X12463051
https://id.iste.org/docs/Standards-Resources/iste-standards_students-2016_one-sheet_final.pdf%3fsfvrsn%3d0.23432948779836327
https://id.iste.org/docs/Standards-Resources/iste-standards_students-2016_one-sheet_final.pdf%3fsfvrsn%3d0.23432948779836327
https://www.folkeskolen.dk/624472/ny-undersoegelse-hver-fjerde-laerer-foeler-sig-stresset
https://www.folkeskolen.dk/624472/ny-undersoegelse-hver-fjerde-laerer-foeler-sig-stresset
https://doi.org/10.1145/2999541.2999542
http://eng.uvm.dk/-/media/filer/enguvm/enguvm/pdf/13/131007-folkeskolereformaftale-eng-red%e2%80%932-.pdf%3fla%3den
http://eng.uvm.dk/-/media/filer/enguvm/enguvm/pdf/13/131007-folkeskolereformaftale-eng-red%e2%80%932-.pdf%3fla%3den
https://arkiv.emu.dk/sites/default/files/UVM%20Skoleledelse_WEB.pdf
http://eng.uvm.dk/primary-and-lower-secondary-education/the-folkeskole/the-aims-of-the-folkeskole
http://eng.uvm.dk/primary-and-lower-secondary-education/the-folkeskole/the-aims-of-the-folkeskole
https://uvm.dk/aktuelt/nyheder/uvm/2018/jan/180126-undervisningsministeren-vil-goere-teknologiforstaaelse-obligatorisk-i-folkeskolen
https://uvm.dk/aktuelt/nyheder/uvm/2018/jan/180126-undervisningsministeren-vil-goere-teknologiforstaaelse-obligatorisk-i-folkeskolen
https://doi.org/10.1080/08993408.2018.1560550
https://doi.org/10.1145/2576872
https://doi.org/10.1145/2576872
https://doi.org/10.1145/2994591

Computational thinking in compulsory education: a survey study…

1 3

Elisa Nadire Caeli  is a PhD student at the Danish School of Education, Aarhus University, and the Teacher
Education, University College Copenhagen. Her research focuses on children’s development of computa-
tional thinking skills in primary and secondary education to prepare them to live and work in a digitalized
society.

Jeppe Bundsgaard  is a professor at the Danish School of Education, Aarhus University. His research
focuses on curriculum studies, innovative teaching and learning, and the use of computers in education. His
recent research has been on scenario-based standardized assessments of twenty-first-century skills, includ-
ing computer and information literacy.

1

Technology Criticism in Schools – a Democratic Perspective on

Technology Comprehension

Elisa Nadire Caeli and Jeppe Bundsgaard

This article is a translated version of:

Caeli, E. N. & Bundsgaard, J. (2020). Teknologikritik i skolen – et demokratisk perspektiv på

teknologiforståelse. I Haas, C. & Matthiesen, C. (Eds.): Fagdidaktik og demokrati. Samfundslitteratur.

It is no secret that we spend a large part of our day looking at a screen – both inside and outside the

school setting. We are slowly realizing that the services we use so indiscriminately collect and

process our digital behavior. Even when we are not actively using them. For example, some self-

tracking enthusiasts use a device while they are sleeping that tracks their pulse throughout the night

and can tell them how they have slept and how they can improve their sleep. We can use an app to

scan the food we eat, which then tells us how many calories we are allowed for the rest of the day,

or how far we have to run to earn a piece of strawberry shortcake. Geo-tracking apps collect data

about our location every second of the day, so we can be guided to places we want to go to, or be

matched with people we want to meet. Streaming services tell us which series we want to watch and

what music we want to listen to; we do not even need to click on the next film or create a playlist –

this is automatically done for us. The world’s most popular search engine, Google, provides us with

answers to our questions – often without us having to leave the search engine page – and Facebook

shows us content from those of our friends that we are most interested in, and shows us ads from

products that best match our needs. Based on our nonstop online behavior, a very precise data

image can be drawn using information about our individual lives: our name, age, address, family,

friends, work, interests, attitudes, tastes, etc. Today, our data are not only collected and isolated in

individual programs, they are also collected across programs, and you need to really know your way

around data privacy settings to avoid contributing to the data pool.

But what does it actually cost to be able to save music in our own time capsules, and what are the

consequences of being exposed to election slogans that are tailored to trigger us emotionally by

presenting us with solutions to issues we have discussed with friends and family in our ‘private’

Messenger threads? New dilemmas arise when online programs surveil our behavior in the physical

2

world we know and have learnt to understand, and in which we have earned rights. We might be

tempted to think that being shown targeted content is useful, and that it is fair that machines process

data about us all in the same way. We might even think that this ensures objectivity, because, unlike

people, a computer is not biased by its own subjective values and opinions. However, computer

programs are created by people. Any order that a computer executes is in essence conceived by a

human being and is thus built on human opinions and values formalized in code. A computer can

only do what it has been told to do. And it can be more or less impossible to work out which

algorithms a digital service consists of, to what extent the service manipulates you to perform a

particular behavior or even dictates that you do so, to what extent it gives us a warped image of the

world, and to what extent it contributes to injustice.

Over the past years, we have become increasingly aware of the scope this issue and its

consequences for people. For example, in her book The Age of Surveillance Capitalism, Shoshana

Zuboff, professor emerita, describes a phenomenon she calls surveillance capitalism and that refers

to the worrying way in which technology giants design digital products and services that monitor,

collect, sell and buy data about our behavior. She explains, among other things, how they do this at

the expense of democracy and freedom (Zuboff 2019). And in the books Weapons of Math

Destruction (O’Neil 2016) and Automating Inequality (Eubanks 2018), mathematician Cathy

O’Neil and Associate Professor Virginia Eubanks also describe how the design of algorithms

amplifies discrimination and contributes to inequality.

As early as in the 1960s, the Danish professor of computer science Peter Naur pointed out that “the

understanding of computer programming must be included in general education and thus become

common knowledge” (Naur 1968: 32, our translation). If we failed to do this, computer

programmers would have so much power that it could lead to the death of democracy, because “the

power over a highly computerized system [will] evidently lie with those who understand how it

works” (ibid., our translation). This fear is becoming a reality today. As a democratic society

founded on the rule of law, we need to take seriously the fact that digital technologies lack a sense

of justice and that algorithms lack transparency. When advertisements move from the side of public

buses to our individualized newsfeeds, and when people are replaced by anonymous automatic data

processing, we need to view data processes and digital technologies in a completely new way.

Children should develop this kind of critical understanding of technology during their years of basic

schooling, the purpose of which is, among other things, that children learn how to be critical

consumers.

3

A subject-specific didactic contribution to technology criticism

Worldwide, no one seems to disagree with the tenet that computer science must be included in the

school curriculum. Countless initiatives within the field of computational thinking have been

launched (Bocconi et al. 2016). However, these initiatives tend to focus on programming, and their

objective is often expressed as educating students to meet the needs of the labor market. A larger

educational, social perspective is not the primary focus. In Denmark, we are currently testing the

subject area, technology comprehension, and the subject description includes the development of

basic critical competences. The objective of the subject is to “shape and educate students to be able

to participate as active, critical and democratic citizens in a society characterized by increasing

digitalization” (Undervisningsministeriet 2020, our translation). For example, students in the fourth

to sixth grade must develop a digital awareness that enables them to “assess the intentionality and

applications of digital artefacts in order to be able to act prudently in specific situations” (ibid., our

translation). However, as of yet, no subject-specific didactics have been developed for the subject;

instead the subject description refers to a general theme about pedagogy and didactics, practical

experience as well as a pilot study and an mid-term evaluation of the test subject. Seen in this light,

the objective of this article is to offer subject-specific didactic perspectives on a rapidly developing

field.

The primary focus of the present article is the development of an understanding of technology

criticism among K-9 students. The article consists of two parts that each address one of the basic

questions of subject-specific didactics. Part 1 focuses on what technology criticism is in order to

underline the significance and importance of including this area in the academic content of the

school curriculum. We will present examples of how a society risks evolving in undemocratic

directions if its citizens fail to acquire an understanding of data and digital technologies. In Part 2,

we will discuss why teaching this type of academic content in general K-9 schools is important, and

what we must consider when implementing it – both when it is taught as an independent subject and

when it is integrated in another subject – and we include examples of how this kind of awareness

can be boosted. Even though a subject-specific didactic foundation is still lacking for critical

technology comprehension, pioneers of the contemporary field of computer science have shared

numerous considerations and experiences that can put the subject into perspective and inspire our

thinking today. We will therefore include historical discussions and relate these to the situation

today throughout the article. Let us begin with a short history of the computer.

4

The power of the machine in society – historical highlights

Ever since the advent of the computer, we have discussed its influence and power in society – and

for just as long, we have feared the robot that would render humans redundant due to its far superior

processing capacity compared with the human brain. This sentiment is reflected in the name given

to the first fully electronic computer built in 1945: the ‘Giant Brain’, and similar names like

‘electronic brain’ were used to describe the frightening fact that a machine could replace humans in

many tasks that had previously been considered to rely on brain power (Bednerik 1967).

But for just as long as we have feared this scenario, experts have reassured us that our fears are

unfounded. In line with this, Peter Naur (1954) wrote that he did not fear computers that could

think. The danger was rather humans who could not think. This is because a machine can only

execute a process that a human brain has planned. And this is one of the cardinal points of this

article: that a democratic society needs humans to develop their understanding of computer science

as a human activity.

The idea that machines can think is still with us today. Concepts such as artificial intelligence

insinuate that a computer can be equipped with intelligence and can thus make intelligent choices.

But perhaps we should refrain from understanding the term quite so literally. The concept of

artificial intelligence grew out of the 1956 vision that “every aspect of learning or any other feature

of intelligence can in principle be so precisely described that a machine can be made to simulate it”

(Denning & Martell 2015: 26). However, this notion was subject to criticism from several parties.

For example, some experts pointed out that rule-based machines might appear to be able to have a

conversation in Chinese, but this did not mean that the machine actually understood any Chinese. In

the mid-1980s, researchers abandoned the idea of simulating the way a human brain works (referred

to as strong AI) and instead shifted their focus to designing systems that could take over cognitive

work performed by humans (referred to as weak AI). Weak AI systems do not work in the same

way as the human brain; instead they are designed to perform specific tasks (ibid.: 27-28). Google’s

self-driving car is an example of this. The ‘intelligence’ of the car’s computer system is based on

the choices that the designer of the system has embedded in the code. That is, the car only does

what the designer has asked it to do, and by collecting data and analyzing statistics, it “learns” and

predicts – quite mechanically and without human awareness – what it should do.

The risk of (mis)use of personal data has also been predicted and discussed previously. In the

1970s, the lack of clear rules about what kind of information about individuals could be collected

5

and stored was discussed, raising in particular concerns about who such information could be

shared with, and the risk of unauthorized individuals gaining access to personal data. In connection

with this, a number of moral dilemmas related to collecting personal data were discussed.

Computers made it possible to manage unprecedented volumes of data and thus made it possible to

obtain a detailed picture of an individual’s behavior. This entailed a risk that obsolete information

stored in data registers could be used for unfair purposes. (Fischer, Frøkjær & Gedsø 1972).

The advent of the computer made it possible to use unprecedentedly large volumes of data, and new

automated data processing processes created dilemmas that we are still struggling with today. To

better understand these dilemmas, we will focus on the basic principles of data and data processes

in the following.

About data and data processes

To understand how computer systems work, we need to understand what data and data processes

are. In the words of Denmark’s first professor of computer science, Peter Naur, data are first and

foremost “auxiliary tools, good tools to do things in this world” (Naur 1966, our translation).

Human beings process data all the time: every single day. For example, at a pedestrian crossing

with traffic lights, the two actions ‘stop’ and ‘walk’ are represented by different types of data: the

colors red and green and the image of a man standing still and a man walking. Before we cross the

road, we process these data and ascribe meaning to them. Thus old data become new data – they

become information. In our social context, we have agreed that the color red represents the

information ‘stop’ and that the color green represents the information ‘walk’. Thus data represents

information, but it is not until we process the data that they become meaning-bearing.

When we process data, we can transform existing realities into desired realities, and thereby we can

change things in the world (see Figure 1). In the example above, the current reality is that we are

standing on one side of the road, and the desired reality is that we are standing on the other side.

6

Figure 1. Naur’s model for simulated data processes (reconstructed based on Naur 1966).

Another example – of a more complex reality – is when we are physically at home and our desired

reality is that we are lying by the pool in southern Spain. To realize our desire, the smart move is to

conduct a data process to identify the easiest and cheapest way to get to a pool in southern Spain

instead of just getting in our car and driving. That is, we allow data to represent our current and our

desired reality. In the given example, we would use data about our current reality (our address,

which represents where we live) and data about the desired reality (the address in southern Spain

that represents where we want to go). We can execute this data process by preparing step-by-step

driving instructions (an algorithm) for ourselves using non-digital technologies such as a pencil, a

piece of paper and a map of Europe. However, it can easily become a time-consuming and

cumbersome process to follow roads (data in the form of lines and colors), choose and not choose

exits (more data) and compare possible routes (data on distances, estimated times, types of roads,

beautiful scenery, etc.). And is it does not stop here. We have to ask ourselves whether it is cheaper

to go by car or by plane. And if we are concerned about the climate, we might ask ourselves what is

actually the most environmentally efficient way to travel. And finally, we have to decide which

hotel matches our budget and our wishes.

Today, many digital services have created an abundance of streamlined data processes. Often we do

not even have to provide a location-based service with the data that represent where we live – the

service already has this data (in many cases it has the data, even though we thought we had disabled

the ‘share location’ function). When we have bought our plane ticket, we are (un)pleasantly

presented with recommendations for nice hotels (with a pool) for the exact same dates for which we

have bought tickets, and the hotel automatically sends us a link that tells us if we book a private

driver “online now”, we will get a 30 percent discount. When we arrive at our destination, we will

get a complimentary drink – that is, after we have checked in on social media... And it goes on and

on.

This is just a small – and perhaps at first glance innocent – example of how today the individuals

who develop application services use our data to help create desired realities. The question is, do

they (only) do this for our benefit, or do they (also) benefit from helping us? When do we as

consumers strike the better bargain? We want to gain something and they want to gain something.

We achieve our goals through a data process to which we might not give much thought, and it can

7

seem overwhelming to understand how the individuals who have created a given digital service use

our data to create the algorithms that take us, with just three clicks on our computer, from our home

in Denmark to a pool in Málaga for less than DKK 3,000, and what their motives are. Nevertheless,

we all need to be able to understand these processes.

Today, technology comprehension requires more than simply understanding traditional sequential

algorithms, executed step by step. This is because many computer programs are developed as neural

networks built up of parallel algorithms that are executed simultaneously. Whereas sequential

computer programs execute rules in steps, neural networks are constantly learning new behaviors

through continuous input (this is referred to as machine learning). This makes it far more difficult –

and often impossible – to fully grasp the consequences of neural networks. When we feed computer

systems with our data, we, the user, are in fact giving the program instructions. For example,

artificial translation programs learn from users how to translate a specific word in the future;

location services, learn how long a given route takes by car; and search engines learn how to

prioritize searches. While this has created far greater opportunities, it has also spawned a number of

moral dilemmas and consequences that we examine in more detail in the following.

Data and (amoral) algorithms in use

Denmark has been in first mover with regard to e-government since the 1960s (Jæger & Löfgren

2010), and has developed databases with information about its citizens. Since 1968 all these data

have been coupled through a personal identification number called the CPR number (Nielsen 1991).

As a result of this, Denmark’s public sector stands to benefit from developing algorithms that can

improve public services as well as prevent and monitor certain behaviors.

Access to large data sets helps government institutions prevent and investigate crime. For example,

the Danish police use software from the company Palantir to analyze data from police reports to

find patterns that can be used in decisions about where to patrol and who to keep an extra watchful

eye on. This is called predictive policing (Fribo 2018). The state also uses data to identify citizens

who commit welfare fraud or who have mistakenly been paid too much in welfare benefits

(Hovgaard 2018). This is done, for example, through pooling registers from educational institutions,

hospitals, electricity companies, doctors, psychologists, unemployment insurance funds, banks,

employers, etc. This enables caseworkers to detect benefits fraud. For example, fraud with cash

benefits or child allowance, by identifying dwellings that house a large number of people in a very

small space. Such dwellings are typically used as a front address and several of the individuals

8

registered as living there actually live somewhere else with their family.

Preventative effects and biased side effects

On the face of it, it would seem as if society stands to gain from preventing and stopping crime, and

those of us who never attract the attention of the police or public authorities may take no issue with

our data being included in these analyses – because we have nothing to hide. But as a democratic

society based on the rule of law, we must carefully weigh the disadvantages against the advantages.

Historical data are crucial in situations where the police use data about previous patrols and

criminal activities that have already been committed and discovered to predict who is more likely to

commit a crime and where a crime can be expected to happen. As a consequence of this, if the

police have previously had blind spots or have been biased in their investigations, these prejudices

will be reproduced in the proposals that the algorithm comes up with.

In the US, where predictive policing has been very successful, discussions have centered on

whether, for example, in some areas young black men are subjected to unreasonable suspicion, and

whether it is reasonable that they are stopped by the police again and again, just because they are

young and black. The same bias may apply in the Nørrebro borough of Copenhagen or in the so-

called ghetto areas in some of the bigger Danish towns. If the police exclusively or predominantly

patrol these areas, they will exclusively or predominantly arrest individuals in these areas, and this

in turn will intensify the algorithm. Biased algorithms are not only problematic with regard to

identifying potential criminals, they are also problematic when used to decide who is a good

candidate for a job, how teachers perform, who should be treated with a specific medication, etc.

(see e.g. O'Neil 2017; Mann & O'Neil 2016; Davidson 2014). Precisely because they are made by

humans, algorithms are just as prejudiced as the individuals who develop them – and as the

individuals from whom they learn what to do.

Control through social credit

In China, the government has taken things a step further with regard to the use of data in their aim

to create ‘a good citizen, who is an asset to society’. In 2014, the Chinese State Council presented

the initiative “Planning Outline for the Construction of a Social Credit System” (Prosa 2017, our

translation). The objective of the system is to register and update the so-called social credit of

enterprises and individuals, so that “professional credit assessments are extended to guide the

development of professional, ethical and behavioral norms”. The system identifies, for example,

‘insincere behavior’– i.e. “behavior that seriously undermines the normal social order... seriously

9

undermines transmissions in cyberspace” and “gatherings that disrupt social order and threaten

national defense interests” (Prosa 2017, our translations).

Mitchell & Diamond (2018) describe how, for example, making political statements without

gaining prior permission to do so or sharing news that the Chinese government does not like can

reduce your ranking in these systems. A high ‘citizen score’ may give an individual access to, for

example, a visa to travel abroad, higher internet speed or even the right to travel by train or plane

within the country’s borders, and conversely, a low score penalizes the individual by preventing

them from gaining access to these benefits. Technically, the government can also monitor the

behavior of an individual’s friends and family, whose conduct may then also impact the individual’s

score. In this way, the government can educate the population to behave and think in a specific way

by penalizing or rewarding them for the ‘right’ and the ‘wrong’ behavior. “China’s experiments

with digital surveillance pose a grave new threat to freedom of expression on the internet and other

human rights in China. Increasingly, citizens will refrain from any kind of independent or critical

expression for fear that their data will be read or their movements recorded – and penalized – by the

government”, Mitchell & Diamond (2018) warn. Several pilot projects have been run to test the

social credit score system. One of these was the app Honest Shanghai, which was introduced in

2016. When the user activates the app with the help of a national ID number and facial recognition,

the app collects and analyses up to 3,000 different types of information about the user from 100

public-sector institutions.

The Chinese equivalent to Amazon and Facebook, Alibaba, that offers e-commerce, social media

platforms, an app store, digital payment methods and much more, launched another pilot project

called Sesame Credit in 2015. The Sesame Credit system analyses, among other things, users’

activity on social media. The algorithm is secret, but when the algorithm’s developers are asked to

give examples, they mention that gaming 10 hours a day is considered negative, whereas regularly

buying diapers is considered positive because it signals that you are a responsible parent. The score

is used, among other things, on the dating site Baihe, where individuals with a high score are

considered more attractive partners than individuals with a low score.

China, unlike Denmark, is a one-party system with a tradition of not only extensive social control

and surveillance of its citizens, but also very limited freedom, and the data analyses are therefore

also used for purposes that we in Denmark would consider highly problematic. It is estimated that

by the end of 2021 more than 560 million cameras will be installed in China (Ricker 2019), which,

10

in combination with facial recognition technology, will make it possible to monitor the movements

of the Chinese population, thereby entailing an obvious risk of violating the individual’s right to

privacy. It is not unlikely that similar disturbing systems for measuring the ‘creditworthiness’ of

individuals will spread to other countries, and to some extent it is already happening. In Denmark,

we have already seen how insurance companies add to rising social inequality through their use of

algorithms to determine how much a customer should pay for their policy.

‘Customized’ prices based on data collection

Insurance companies in Denmark have access to an abundance of information about their customers

and their potential customers (PFA 2018; LB 2018). When assessing whether they are willing to

insure a potential customer and at what price, insurance companies can draw on “information from

the Danish Civil Registration System about name and address, information from the Central

Register of Buildings and Dwellings about the customer’s address and dwelling in connection with

the purchase of household insurance, and information from the department of motor vehicles in

connection with insurance for motor vehicles” (LB 2018, our translation). In many cases, the

information they access not only relates to the customer applying for insurance, but also to

customers who live nearby, have the same type of car, the same type of job, the same family

structure, etc. And insurance companies can also retrieve “information from publicly available

sources such as search engines, virk.dk, the yellow pages, Krak, social media, OIS.dk and

boligejer.dk.” By using data from search engines, in principle an insurance company has access to

all the information about the customer that the customer or others have shared online. This

information can be used to find out who the new customer is ‘friends’ with, what kind of social and

political circles the customer moves in, as well their religious associations, and this data can then be

used to create profiles of individuals who resemble the customer, that is, customer profiles created

based on real data. Insurance companies continuously analyze data about their customers in order to

identify patterns in claims, fraud, switches to a new provider (‘loyalty’), etc., giving them a ‘risk

profile’ for each customer as well as potential customers (PFA 2018).

All these data are entered into a secret algorithm that calculates how much a customer should pay

for their insurance as well as the terms and conditions of the policy. So when two potential

customers who live in the same town enquire about the price of insurance on the same day, one

customer may be offered an insurance policy in the most expensive group and be subject to a

number of special conditions that the other customer, who lives in another neighborhood, is not a

11

member of the same political party, is a different gender or has another family structure, or whose

friends belong to different social circles than the first customer, is not.

Danish insurance companies are also looking into the possibility of collecting data about “how

many kilometers motorists drive, how quickly they accelerate, and how hard they brake,” and some

companies are considering how they can use access to customer data via mobile phones, for

example, by collecting data about the customer’s movements throughout the course of a day. “For

individuals who work out, it’s great that they can get a discount if they use a pedometer, but what

about the people who don’t run a half marathon, or whose GPS tracking shows that they often

frequent fast-food restaurants? Is it fair that they have to pay a higher premium?” asks a legal

adviser from the Danish Consumer Council Tænk (Mørch 2017, our translation). It is impossible to

know what determines which customers pay the most for their insurance, just as the ethical aspects

and consequences hereof – quite conveniently for the insurance company – are hidden in the

algorithms used by the insurance company to calculate their insurance premiums. However, it is

safe to say that decisions about how much a customer is to pay for their insurance premium are not

objective, despite the fact that a machine calculates the premium objectively. Even though data

about two different customers are not processed using two different algorithms, the embedded

subjective values of the algorithm may give rise to, and even amplify, inequality. And this

inequality may in fact be based on what other customers who resemble the potential customer have

done. You might be completely innocent and yet still be prevented from taking out insurance simply

because you resemble the wrong people or live in the wrong place.

Whereas in China the state is behind most initiatives aimed at promoting desired citizen behavior, in

capitalist societies, where governments are subject to democratic control, companies are more

involved in developing algorithms that use data to promote the desired response patterns (for them).

Nevertheless, such practice still raises a number of questions. Firstly, who decides what is desirable,

and how far are we as a society willing to go (and let companies go) in terms of determining what

constitutes desirable behavior? Secondly, is it reasonable that an individual’s possibilities and

challenges are determined in whole or in part by who they resemble, where they live and who is in

their social circle? And finally, what data are available and therefore included in assessments of

whether an individual’s behavior is appropriate?

Democratic participation in a network society

The growth of the bourgeois and democratic public sphere in the 18th and 19th centuries was

12

closely linked to the literary sphere, to meeting places in coffee houses, salons, etc., and to the rise

of newspapers as a medium for the fledgling public debate (Habermas 1962). In the early years of

the Internet, a number of pioneers saw in it the potential for further democratization through new

modes of activism and new ways of accessing knowledge and news that were not being printed in

traditional news media (Rheingold 1993). In many ways, reality has far exceeded their expectations.

All over the world, people are joining discussions about sexual violence and harassment of women,

global campaign organizations such as Avaz.org have emerged and have set the agenda and

changed decisions in countless areas, and activists have used mobile technologies to organize their

actions and overthrow regimes. These technologies have enabled activists from different parts of the

world to learn from one another, to coordinate their actions and support each other. However,

terrorist organizations have also benefitted in the same way from these technologies.

Democratic bodies at all levels are trying to involve citizens, including young people, in their

decisions, and they are trying to engage young people in these bodies. However, we do not always

make use of the options available to us. Young people in Denmark are very well informed about the

world around them, and they have a sound understanding of democracy. But they show little

interest in becoming involved in democratic bodies (Bruun, Lieberkind & Schunck 2017) or in

other organizations in which they could make a difference.

Today, the Internet provides us with access to information, insight and inspiration from all over the

world – both via the ‘old’ media’s online channels and from all the new media, blogs and campaign

bodies that have emerged. We can read about the fight against an oil pipeline on the border between

Canada and the United States in our newspaper and then visit the websites hosted by activist forces

to learn more about the situation. We can read about any given topic that interests us on specialist

media from all over the world, and we can follow discussions between the world’s leading minds in

any field. Again, this is made possible by algorithms. We especially see this with regard to what

news items we are presented with in our feed on Facebook, YouTube, etc. The algorithms at play

here most likely use knowledge about what we have clicked on before, what our friends have seen

and shared, etc. However, we cannot know for sure how the algorithms work as this knowledge is

confidential (Mosseri 2018).

The next step in automated access to news might be that algorithms take over a substantial share of

the news production itself. The British company Urbs Media has developed an algorithm that

retrieves data from a data source – for example, about the current birth rate – and then enters these

13

data into an article template that then can be used to produce hundreds of the same article targeted

at different local newspapers (Rogers 2018). Several other companies are developing a system that

can extract articles from different news sources and then combine them into unique, new articles.

One of the major challenges in the democratic debate of our time is what has been termed fake

news.

What is fake news?

Fake news is news – or rather propaganda – that is produced more or less with the intent of fooling

the reader or viewer to believe in a false representation of the truth. Fake news is included in the

category of journalism known as yellow journalism – that is sensationalized news. Fake news uses a

one-sided representation of facts through a deliberate distortion of facts – or may even present

fabricated lies as facts.

Artificial intelligence provides the producers of the latter with a very effective tool. For example,

today it is possible to create extremely realistic photographic reproductions of people who have

never existed, as was shown in a research project by the chip manufacturer NVIDIA (2017). When

combined with similarly extremely realistic videos of physical surroundings, it is possible to create

a completely realistic, but entirely artificial video of massacres of civilians in a war zone, for

example. Videos like this can then be shared on social media or via news channels. Stories that

contain human suffering, evil, condemnable actions, etc., are often shared hundreds of times and

thus tend to ‘go viral’ and are thereby widely spread all over the Internet.

Fake news may have played a crucial role in the American presidential election of 2016 and in the

Brexit referendum the same year. Triggered by these and similar events, researchers and tech

companies are now working to develop technologies that can identify fake news and prevent its

spread (see e.g. Cherry-Michigan 2018; FNC 2018; Hern 2017; Wingfield, Isaac & Benner 2016).

But such systems come with their own disadvantages. An example is Facebook’s outsourcing of its

seemingly impartial fact checking system to the conservative American news site The Weekly

Standard, which has given the news site the power to block any articles they deem to be false. As a

consequence, in September 2018, based on a headline, The Weekly Standard marked an authentic

news article from the progressive news site ThinkProgress as being fake, and as a result, numerous

Facebook readers were prevented from seeing the article (Ingram 2018). So, how does it affect the

democratic debate when companies are tasked with curating, evaluating and excluding opinions,

news, and worldviews? Are socialist perspectives on the world fake news? Fascist perspectives?

14

And what about sexually provocative news? How does it affect the Danish democratic debate when

American companies who have their own perception of what is right and wrong decide which

information is presented to people in Denmark?

The examples mentioned above are just a few of the many issues that we as citizens in a democratic

society must consider. Other issues include the thousands of videos based on an algorithm and

promoted through the mass production of keywords; products that are individualized through

algorithms; workflows and actions that are automated (from self-driving cars to health platforms

and digital learning platforms) and many, many more. It can be quite overwhelming to grasp all of

this. So how should we approach this important area in schools? What do students need to learn?

And how? We will discuss this in the following.

What do students need to learn – and how?

Globally, the question of whether computer science – or elements hereof – should be included in

curricula for compulsory education is gaining more attention. Discussions are based on the

perspective that computer science skills are just as important as reading, writing and arithmetic in a

modern society that is increasingly permeated by digital data processes that have a huge impact on

society as a whole and on the individual. This development brings new opportunities for

democracy, but it also poses a threat to democracy as we have shown in several examples above.

Just how important a role computer science plays seen from a social and democratic perspective

was formulated as early as in 1968 by Peter Naur who emphasized that:

....the understanding of computer programming must be included in general education and

thus become common knowledge. [...] If this this broad understanding of programming is not

effectuated, expert programmers will gain a power position that can lead to the end of

democracy. (Naur 1968, our translation and italics)

We can all seem to agree at both national and international levels that students need to learn

‘something about computer science’, but we cannot seem to agree on what this ‘something about”

should actually include. What do students need to learn? What skills do teachers need? And who

will teach the teachers these skills?

We can, however, agree that no consensus exists. A questionnaire survey from 2018 among

representatively selected heads of Danish K-9 schools indicates that only just under seven percent

of headmasters feel they really understand what computational thinking actually entails (Caeli &

Bundsgaard 2019a). The remaining 93 percent understand to some degree that computational

15

thinking entails more than just programming skills, and they consider it a significant skill with

regard to educational development and Bildung – with the main emphasis being on Bildung. For

example, a total of 91 percent either strongly agree or agree that computational thinking entails

critical thinking. According to the surveyed headmasters, one of the biggest challenges of

implementing the subject in practice is that teachers have no training in the subject. If we look at

initiatives being taken internationally, we see that many of these initiatives are based on

programming environments. Thus, focus is more on formal coding skills than on understanding

what lies behind the coding. But perhaps we do not need to look abroad; some of the answers can be

found here in our Danish traditions.

From data education to technology comprehension – IT development

in Danish schools

In 1972, a working group presented a number of well-founded subject-specific didactic

considerations about what computer science should comprise in K-9 schools and in the teacher

education degree program – both as an independent subject and when integrated in other subjects.

The working group based its considerations on the draft revision of the objects clause for K-9

schools, which was implemented three years later in 1975 and that laid the foundation of the objects

clause in place today. The objects clause emphasized that “skills taught at school should be seen in

relation to developments in society, because these developments will create new situations that the

individual must learn to master, and they will create new problems in the relationships between

people” (Undervisningsministeriet 1972: 39, our translation). The working group proposed that

computer science should be included as an independent subject (data education) and be integrated

into other subjects.

In light of the focal point of this article, the working group’s perspectives about an interdisciplinary

approach are particularly relevant, especially their suggestion to integrate computer science into

social studies, history, geography and biology. The working group wrote in its report: “In these

subjects, and when dealing with issues relating to social studies in general, computer science,

including teaching its applications, can help students achieve a relatively in-depth understanding of

the area” (our translation). And general, interdisciplinary concepts and conceptualizations such as

data, problem formulation, model, algoritmization and process should be included in elementary

data education (ibid.: 40). The working group also noted that their ideas could not be realized

without also educating teachers – which in turn required education of teacher trainers. They

16

therefore recommended as an initial step to launch an intensive program for upgrading teachers’

skills. In the long term, they recommended recruiting university graduates with a degree in

computer science to teach computer science in teacher training programs. They also emphasized

that it would be advisable to establish a Master’s of Education program in computer science, whose

graduates could teach computer science as a main subject in teacher training programs. Pedagogics

and didactics were important components.

We are faced with similar considerations today. In the 1970s, the working group’s visions crumbled

when it was decided to introduce photography as a new subject instead of data education. Then

followed a period in which several pioneering schools unilaterally introduced data education, and

later it was introduced as an elective subject for a few years. However, it lost its momentum, and in

the early 1990s it was eventually replaced by the interdisciplinary subject EDP that no one really

took responsibility for. For many years following this, focus was on operational user competencies

and infrastructure, such as a PC user certificate and Internet connections, as well on purchasing PCs

for schools. From around 2000 and onwards, focus shifted to the procurement of interactive

whiteboards and tablets – and later robots, 3D printers, etc. Didactics and reflections on what was

actually needed were not the primary focus (Caeli & Bundsgaard 2019b).

Three aspects of technology comprehension as a subject in K-9 schools

Today is the first time since the 1970s and 1980s that we have moved closer to actually establishing

a subject that resembles the abandoned subject of data education. The new subject is called

technology comprehension and was originally introduced by the Danish Ministry of Education as an

experiment that had an overall vision that all children learn to comprehend technology – as

indicated by the name (Undervisningsministeriet 2018a). According to the subject description, this

entails not only basic knowledge about computer science, iterative design processes, complex

problem-solving and programming, but also – and this is particularly important to underline in this

context – “the skills to assess the applicability, intentionality and consequences of digital artefacts

for the individual, the community and society as a whole” (Danish Ministry of Education 2020, our

translation).

Figure 2 visualizes three main aspects of technology comprehension as a subject in K-9 schools:

computer science, design and technology criticism.

17

Figure 2. Three aspects of technology comprehension as a subject in K-9 schools: What should

schools teach, why and how?

In general, computer science can be said to refer to a basic understanding of what data are, their

characteristics and use; design refers to the implementation of design processes and development of

digital technologies that solve relevant issues; and technology criticism refers to an understanding

of the consequences (risks and possibilities) of digital technologies. How can we include all these

aspects of technology comprehension in K-9 schools?

Three perspectives of technology criticism

We have ascertained that design and programming initiatives – regardless of how their importance –

are not enough. Students must acquire knowledge about what data are and how they are collected

and processed today, so they themselves can determine the possibilities and risks posed by

automation for us as individuals, as communities and as societies, see Figure 3.

Figure 3. Three perspectives of technology criticism.

Society

Community

Individual

18

Students must develop an understanding of how systems work, and they must be able to discuss in a

broader perspective the moral dilemmas and consequences of the choices a designer makes when

designing an algorithm.

Students are more likely to acquire basic knowledge and skills if these are taught as an independent

subject. Consequently, teachers with specialist knowledge and training to teach the fundamental

principles of computer science are needed. Native language teachers or social science teachers can

hardly be expected to take on this responsibility. Their academic focus is – and should be – on other

areas. Having said that, perhaps these two subjects can take on a central role in the discussion about

how technology and automation impact society and the ethical issues this raises? For example,

teaching materials could include relevant contemporary dilemmas for the students to discuss and

consider. A classic example is the moral dilemmas that arise when programming self-driving cars:

Who should the computer program select to die if the choice stands between two passengers in the

car and five pedestrians? What if the two passengers are from the same family? What if four of the

five pedestrians are children?

Seen in the context of today, we cannot ignore the importance of technology comprehension in any

of the subjects taught in K-9 schools. In each individual subject, we need to consider how the

interdisciplinary nature of computer science affects the objectives of each subject. For example, in

Denmark, in the subject of visual arts, students should be able to “analyze the function of an image

in a given context” (Undervisningsministeriet 2019b, our translation). And in history, students

should be able to “relate changes in everyday life and living conditions over time to their own lives”

(Undervisningsministeriet 2019c, our translation).

Even though a visual arts teacher or history teacher is not responsible for teaching students the

principles of computer science – just as they are not responsible for teaching students how to read

or write texts – they must incorporate the elements of computer science that are relevant in their

academic context in same way that they must teach students how to read academic texts from their

field. That is one side of the story: the relevance of the subjects and areas of responsibility.

Another side of the story is the training of teachers. As the working group pointed out in 1972, in

the long term it would make good sense to educate ‘didactic computer scientists’, in much the same

way as Master’s students in mathematics should acquire pedagogical and didactic competencies

when they are responsible for educating teachers of mathematics. Just as it is not enough to merely

19

focus on the didactics of a subject, it is not enough to merely focus on the academic content of the

subject computer science. Danish K-9 schools are not based on the objective to educate specialists.

Instead, students should acquire both ”knowledge and skills that will prepare them for further

education” as well as skills that prepare them “to be able to participate, demonstrate mutual

responsibility and understand their rights and duties in a free and democratic society” (Ministry of

Children and Education 2018).

Conclusion

The purpose of this article was two-fold. First, based on several examples of how data and

algorithms are used today, we have emphasized how important it is for children in a democratic

society to develop the ability to think critically about the way in which digital technologies use data.

By using automated data processes, humans have achieved enormous progress for individuals and

society as a whole, but we have also seen an abundance of examples of how secret algorithms

increasingly mislead us rather than guide us. As a democratic society founded on the rule of law, we

are responsible for ensuring that, as part of their basic education, children learn how to be critical

toward data and algorithms. In this respect, we want this article to serve as a wakeup call.

Second, we have discussed how this kind of thinking can be promoted in Danish K-9 schools,

bearing in mind how quickly the area has developed and how far behind the Danish school system

is, despite several warnings from experts over the years. Computer science is not a mandatory

subject in Danish K-9 schools, neither is it integrated in other subjects – yet. However, several

progressive initiatives in this area exist. A new subject – technology comprehension – is being

tested, the objective of which is to “shape and educate students to participate as active, critical and

democratic citizens in a society characterized by increasing digitalization”

(Undervisningsministeriet 2020, our translation).

If these progressive thoughts are to be implemented in practice, we need to educate teachers to

teach the subject. Technology comprehension should be an independent subject in line with other

subjects offered as part of the teacher training program – and should not only include computer

science as a discipline in itself but also how to teach computer science. In addition, it is important to

consider how the academic content of subjects that are already taught is related to the issues we

have outlined in this article. Which aspects of technology comprehension are relevant to address in

each individual subject?

“There is an increasing tendency to give up and leave it up to the ‘experts’. But this is absolutely

20

untenable for an area that affects key decisions,” said Peter Naur in 1968 (our translation). He

realized that those who understand how the system works are those who hold the power.

This fact is the reason why many of us who work with computers and think about what

consequences computers have for society feel compelled to continue emphasizing that the

understanding of computer programming must be included in general education and thus

become common knowledge. (Naur 1968, our translation)

The warning signals have been flashing for 50 years – and today the signals are more powerful than

ever. It is time for us to take our responsibility seriously and ensure that our children are ready for

their future lives in the democratic society to which they belong.

References

Bednerik, K. (1967). Programmørerne: Automationens elite. Albertslund: Det Danske Forlag.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A. & Engelhardt, K. (2016). Computational

Thinking in Compulsory Education. Brussels: Joint Research Center. European Commission.

Bruun, J., Lieberkind, J. & Schunck, H.B. (2017). ICCS 2016: internationale hovedresultater.

Copenhagen: Danish School of Copenhagen, Aarhus University.

https://pure.au.dk/portal/da/publications/iccs-2016(2ac8e389-3c6e-4d1e-ad96-

ba33c5bd8e51).html

Caeli, E.N. & Bundsgaard, J. (2019a). Computational thinking in compulsory education: A survey

study on initiatives and conceptions. Educational Technology Research and Development, 68(1):

551-573.

Caeli, E.N. & Bundsgaard, J. (2019b). Datalogisk tænkning og teknologiforståelse i folkeskolen tur-

retur. Tidsskriftet Læring Og Medier (LOM), 11(19): 30.

https://doi.org/10.7146/lom.v11i19.110919

Cherry-Michigan, G. (2018). Algorithm beats humans for sniffing out fake news. Futurity, August

22. https://www.futurity.org/fake-news-detecting-algorithm-1844942/ (accessed 19.06.20).

Davidson, J. (2014). The 7 social media mistakes most likely to cost you a job. Money, October 16.

http://www.time.com/money/3510967/jobvite-social-media-profiles-job-applicants/ (accessed

19.06.20).

Denning, P.J. & Martell, C.H. (2015). Great Principles of Computing. Cambridge: The MIT Press.

21

Eubanks, V. (2018). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the

Poor. New York: St. Martin’s Press.

Fischer, C., Frøkjær, E. & Gedsø, L. (1972). Datalære i skolen. Om data og EDB i samfundet.

Copenhagen: Gads Forlag.

FNC (2018). Exploring how artificial intelligence technologies could be leveraged to combat fake

news. Fake News Challenge. http://www.fakenewschallenge.org/ (accessed 19.06.20).

Fribo, A. (2018). Politiet: Predictive policing er interessant – men datagrundlaget er for småt.

ING/Version 2, August 28. https://www.version2.dk/artikel/politiet-predictive-policing-

interessant-datagrundlaget-smaat-1086050/ (accessed 19.06.20).

Habermas, J. (1962). Strukturwandel der Öffentlichkeit: Untersuchungen zu einer Kategorie der

bürgerlichen Gesellschaft. Frankfurt: Suhrkamp.

Hern, A. (2017). Google acts against fake news on search engine. The Guardian, April 25.

https://www.theguardian.com/technology/2017/apr/25/google-launches-major-offensive-against-

fake-news (accessed 19.06.20).

Hovgaard, L. (2018). 12.000 borgere udtages årligt af Udbetaling Danmark til datatjek for fejl og

snyd. Version 2, September 17. https://www.version2.dk/artikel/12000-borgere-udtages-aarligt-

udbetaling-danmark-datatjek-fejl-snyd-1086211/ (accessed 19.06.20).

Ingram, M. (2018). The Weekly Standard and the flaws in Facebook’s fact-checking program.

Columbia Journalism Review, September 18. https://www.cjr.org/the_new_gatekeepers/the-

weekly-standard-facebook.php (accessed 19.06.20).

Jæger, B. & Löfgren, K. (2010). The history of the future: Changes in Danish e-government

strategies 1994-2010. Information Polity, 4: 253-269. https://doi.org/10.3233/IP-2010-0217

LB (2018). Forsikringstilbud og kontaktoplysninger. Lærerstandens Brandforsikring.

https://www.lb.dk/personoplysninger/10-forsikringstilbud-og-kontaktoplysninger (accessed

19.06.20).

Mann, G. & O’Neil, C. (2016). Hiring algorithms are not neutral. Harvard Business Review,

December 9. https://hbr.org/2016/12/hiring-algorithms-are-not-neutral (accessed 19.06.20).

Ministry of Children and Education (2018). The Aims of the Folkeskole.

https://eng.uvm.dk/primary-and-lower-secondary-education/the-folkeskole/the-aims-of-the-

22

folkeskole (accessed 24.08.21).

Mitchell, A. & Diamond, L. (2018). China’s surveillance state should scare everyone. The Atlantic,

February 2.

Mosseri, A. (2018). Bringing people closer together. Newsroom, January 11.

https://newsroom.fb.com/news/2018/01/news-feed-fyi-bringing-people-closer-together/

(accessed 19.06.20).

Mørch, T. (2017). Forbrugerrådet Tænk bekymret over forsikringsbranchens nye tiltag.

Finanswatch, February 26. https://finanswatch.dk/Finansnyt/Forsikring/article9393163.ece

(accessed 19.06.20).

Naur, P. (1954). Elektronregnemaskinerne og hjernen. Perspektiv, 1(7): 42-46.

Naur, P. (1966). Datalogi og datamatik og deres placering i uddannelsen. Magisterbladet, May 15.

Naur, P. (1968). Demokrati i datamatiseringens tidsalder. Kriterium, 3(5): 31-32.

Nielsen, H. (1991). CPR – Danmarks Folkeregister. CPR-kontoret.

https://www.cpr.dk/media/17546/cpr-danmarks-folkeregister.pdf (accessed 19.06.20).

NVIDIA (2017). Generating photorealistic images of fake celebrities with artificial intelligence.

NVIDIA Developer, October 30. https://news.developer.nvidia.com/generating-photorealistic-

fake-celebrities-with-artificial-intelligence/ (accessed 19.06.20).

O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and

Threatens Democracy. New York: Crown.

O’Neil, C. (2017). Don’t grade teachers with a bad algorithm. Bloomberg Opinion, 15. maj.

https://www.bloomberg.com/view/articles/2017-05-15/don-t-grade-teachers-with-a-bad-

algorithm (accessed 19.06.20).

PFA (2018). Behandling af personoplysninger. PFA, July 2. https://pfa.dk/andet/behandling-af-

personoplysninger/ (accessed 19.06.20).

Prosa (2017). Kinas system til social kontrol. Prosa, November 2.

https://www.prosa.dk/artikel/kinas-system-til-social-kontrol/ (accessed 19.06.20).

Rheingold, H. (1993). The Virtual Community: Homesteading on The Electronic Frontier.

Cambridge: The MIT Press.

23

Ricker, T. (2019). The US, like China, has about one surveillance camera for every four people,

says report. https://www.theverge.com/2019/12/9/21002515/surveillance-cameras-globally-us-

china-amount-citizens (accessed 30.06.20).

Rogers, G. (2018). Reporters and data and robots: Why 2018 will be the year of automation in

news. Urbs Media, December 31. https://medium.com/@urbsmedia/reporters-and-data-and-

robots-ee352220c5f1 (accessed 19.06.20).

Undervisningsministeriet (1972). Betænkning om edb-undervisning i det offentlige

uddannelsessystem. Betænkning nr. 666. Undervisningsministeriet.

Undervisningsministeriet (2020). Teknologiforståelse. Copenhagen: Undervisningsministeriet.

https://www.emu.dk/grundskole/teknologiforstaelse (accessed 30.06.20).

Undervisningsministeriet (2018a). Undervisningsministeren vil gøre teknologiforståelse

obligatorisk i folkeskolen. Copenhagen: Undervisningsministeriet.

https://uvm.dk/aktuelt/nyheder/uvm/2018/jan/180126-undervisningsministeren-vil-goere-

teknologiforstaaelse-obligatorisk-i-folkeskolen (accessed 19.06.20).

Undervisningsministeriet (2019b). Billedkunst. Faghæfte 2019. Copenhagen:

Undervisningsministeriet. https://emu.dk/sites/default/files/2020-

06/GSK_Billedkunst_Fagh%C3%A6fte.pdf (accessed 29.06.20).

Undervisningsministeriet (2019c). Historie. Faghæfte 2019. Copenhagen:

Undervisningsministeriet. https://emu.dk/sites/default/files/2019-

08/GSK.%20Fagh%C3%A6fte.%20Historie.pdf (accessed 29.06.20).

Wingfield, N., Isaac, M. & Benner, K. (2016). Google and Facebook take aim at fake news sites.

The New York Times, November 14. https://www.nytimes.com/2016/11/15/technology/google-

will-ban-websites-that-host-fake-news-from-using-its-ad-service.html (accessed 19.06.20).

Zuboff, S. (2019). Overvågningskapitalismens tidsalder: Kampen for en menneskelig fremtid ved

magtens nye frontlinje. Copenhagen: Informations Forlag.

 Tidsskriftet Læring og Medier

Technology Comprehension in Schools

Computational Design for Solving Authentic Problems

Elisa Nadire Caeli, Danish School of Education (DPU), Aarhus University and the Department of

Teacher Education, Copenhagen University College

Martin Dybdal, Department of Computer Science, University of Copenhagen

This article is a translated version of:

Caeli, E. N. & Dybdal, M. (2020). Teknologiforståelse i skolens praksis. Datalogisk design til autentisk

problemløsning. Tidsskriftet Læring Og Medier (LOM), 12(22). https://doi.org/10.7146/lom.v12i22.115613

Abstract

This article is a didactic contribution to the subject area known as “technology comprehension” in
Danish K-9 schools. In this context, technology comprehension is regarded as a discipline that
involves developing competencies in the fields of computational thinking, design thinking, and
critical thinking regarding the use of computer science in society.
The article presents the results of an experiment conducted in a Danish eighth-grade class. The
purpose was to examine a way of teaching computational thinking and design thinking by
developing a computational design to solve an authentic problem, thereby identifying didactic
opportunities and challenges.
The experiment was based on two primary hypotheses: We expected the students would dislike the
idea of changing their designs after user feedback, and we thought they would have a narrow view
of computer science, regarding it as the equivalent of programming. These hypotheses were
partially confirmed. However, other opportunities and challenges were also identified, including
changed conceptions of computer science and new opportunities for success within the field,
success with creative breaks and varied ways of working, the positive importance of authenticity
with regard to the students’ understanding, and the wish for a greater degree of freedom than they
were granted in this project.

Introduction
This article presents the results of a Danish research project conducted in a Danish eighth-grade (14-15

year-olds) class in March 2019. We designed a three-day course aimed at teaching the students to

develop a digital solution to a real problem. The objective was to examine a way of teaching in which the

students developed comprehension of and competencies in computational thinking, including design

and programming, using data as a means to develop a solution to an authentic problem for humans,

rather than the acquisition of these skills being a target in itself, detached from real practices.

Specifically, we wanted to examine the subject-specific didactic opportunities and challenges in

developing and implementing this kind of course.

The project was conducted at a time when significant international attention is being directed at

computer science as a discipline in basic education. All over the world, attempts are being made to

https://doi.org/10.7146/lom.v12i22.115613

Caeli & Dybdal 2

introduce computational thinking, either as an independent subject or as part of other disciplines in

basic education. In Denmark, this has led to, among other things, the Danish Ministry of Education

launching experiments on technology comprehension as a stand-alone subject and as a discipline

included in other subjects. Since March 2019, technology comprehension has been taught at 46 schools

with the overall objective of “developing academic competencies and acquiring skills and knowledge, so

that they [students] can constructively and critically participate in the development of digital artefacts

and understand what such artefacts mean” (EMU, 2019, our translation).

Methodologically, this project was designed as a design experiment in the subject area referred to in the

Danish K-9-school context as technology comprehension, and it is based on a problem within science as

a subject. We planned the experiment together, but divided the roles between us: one of us took on the

role of teacher and the other took on the role of observer. Our experiment was planned and conducted

independently of the Ministry’s experiment. This means that our teaching design was not based on the

curriculum for the experimental subject area technology comprehension; instead we developed our own

goals and didactic considerations based on research in the area and theoretical analyses. We consider

technology comprehension as a discipline that involves developing competencies in the fields of

computational thinking, design thinking and critical thinking with regard to how computer science is

used in society (Caeli & Bundsgaard, 2020). In this context, we specifically examine competencies within

computational thinking and design thinking through a computational design developed by eighth-grade

students.

Structure and research contribution of the article

In this article, we first present the societal and educational context in which the experiment is based, as

well as its theoretical and methodological basis. Then we introduce our course design and describe and

analyze what we did based on specific examples. Next, we discuss our results, including what worked

and what did not work as seen from our perspective and from the students’ perspectives, and we address

the opportunities and challenges we see in connection with implementing this kind of technology

comprehension in practice. Finally, we round off with our concluding remarks.

Our experiment is intended as a specific and authentic example of how teachers can teach the aspects of

technology comprehension that we refer to as computational thinking and design thinking, and

therefore a detailed description of practice is included. We also identify other potential opportunities

and challenges that we saw in our experiment, and we discuss cultural changes that we believe are

necessary.

Computer science and project-specific focus
Our experiment is based on the tenets of former professor of computer science Peter Naur. He believed

that computer science is an interplay between people and computers, and that the subject must always

include focus on how it is used in practice.

Naur pointed out that the starting point of all projects is an incomplete description, for which many very

different solutions can be fully acceptable (Naur, 1970). He also emphasized that programming is merely

a tool in this kind of process, and he illustrated this by introducing a model that described the

relationship between people, problems and tools (Figure 1).

Caeli & Dybdal 3

Figure 1. The relationship between problems, tools and people (Naur, 1965)

Naur explained that we need tools to understand problems, and that tools that are designed to solve

problems that nobody understands are meaningless. He also said that problems only exist in the minds

of people and only relative to understood tools, and that tools only exists as tools if people think of them

as appropriate things with which to solve a problem (Naur, 1965).

One of the authors of this article has interpreted Naur’s model so it can be used for subject-specific

didactic purposes in a contemporary context (Caeli, 2021). In this article, we exemplify how teachers

can use the model when planning, implementing and assessing their teaching to be aware of all three

perspectives and how they are related to one another by asking themselves and the students the

following questions:

What is the relationship between problems and people? Do the students consciously

solve a problem that has relevance for people? The questions allow the teacher to see

whether the students are working with authentic problems, or whether they risk working

with digitalization simply “because we can”.

What is the relationship between people and tools? Do the students understand and

think about the tools as appropriate things for solving problems? These questions will help

the teacher become aware of whether the students have what it takes to solve problems,

and whether they understand the tools used for open problem solving, or whether there

is a risk that students’ limited functional user skills will limit their use of tools.

What is the relationship between tools and problems? Are the tools used to solve

problems that the students actually regard as problems? Here, the teacher can become

aware of whether the tools are used to solve problems, or whether there is a tendency

for using the tool to become the goal in itself. (Caeli, 2021)

According to Naur, problem-solving should unfold as a process in which there is a conscious relationship

between the three factors. We believe this is important in a teaching context so as to avoid, for example,

uncritically focusing on learning how to use a specific tool without having a real problem or without

understanding what the tool can be used for in real life. In our experiment, the students were asked to

work creatively with problem-solving through design thinking and computational thinking.

Design thinking, computational thinking and computational

design

In recent years, the concept of design thinking has been increasingly understood in a broad sense to

refer to a method of problem solving; however, the term has actually existed for many years. Professor

John Edward Arnold is considered to be one of the first to use the term when in 1959, in his book

Creative Engineering, he described it as a specific approach to creative problem-solving. The design

researcher Nigel Cross explains that design thinking involves processes such as analyzing context,

Caeli & Dybdal 4

generating and delineating problems, generating ideas, thinking creatively, making drafts, sketches,

models and prototypes, testing a design and evaluating (Cross, 2011).

In our project, we couple computer science and design. Professor Peter J. Denning discusses this kind

of coupling in an article from 2017, in which he introduces the concept of computational design. We

find this concept to be well-suited to our experiment. Computational design is the intersection between

computational thinking and what is referred to as computational doing. According to Denning,

computational thinking refers to a process in which a computational solution to a problem or a concern

is found1, and computational action refers to the actual use of computer science and computational tools

to solve problems. In contrast, computational design refers to the creation of new computational tools

and methods that solve problems (or concerns) for people, and – not least – that people actually use.

About this relationship, he says:

Clearly, designers are a subset of thinkers because you need to be a computational thinker

to design computational tools; and not every thinker is a designer. Also, designers are tool

users, but not all tool users are designers or thinkers.” (Denning, 2017)

The model below (Figure 2) illustrates this relationship.

Figure 2. The relationship between computational thinking, computational doing and computational design (Denning, 2017).

This coupling was a mainstay of our experiment, and this will be demonstrated below in the section

about the experiment in practice.

Methodological approach and didactic reflections

Research question and hypotheses

The purpose of the experiment was to examine a way of teaching computational thinking and design

thinking in Danish K-9 schools by developing a computational design to solve an authentic problem,

thereby identifying the subject-specific didactic opportunities and challenges of this kind of teaching.

1 Denning uses the term concerns instead of problems because we often use computer science to solve concerns

that are not actually problems. An example of this is when we develop a game; this can hardly be seen as a

response to solving a problem.

Caeli & Dybdal 5

We wanted the students to design and program a product that could solve an authentic problem in the

world. The intention was, and is, that by presenting our experiment and our analyses of practices, we

can contribute to a subject-specific didactics of technology comprehension that others can build on or

be inspired by. To achieve this aim, we have been guided by the following overall research question:

What are the subject-specific didactic and cultural opportunities as well as challenges in connection

with teaching computational thinking and design thinking in a K-9-school context?

We had a hypothesis that an iterative approach to computer science and design in a school context could

be problematic, and that students were more accustomed to school work following a linear process from

A to B. This assumption was based on, among other things, previous research in the area that has shown

that teachers sometimes find it challenging to teach flexible processes (Smith et al., 2016). More

specifically, we hypothesized that it could prove challenging to get the students to change their design

to accommodate user feedback if they already believed that their design was finished. However, we

agreed that it was important the students acquired an understanding of how a computational designer

really works. This meant that they also needed to learn how iterations can be used.

Furthermore, we hypothesized that the students’ perception of computer science would be limited to

thinking of it in terms of programming as in “writing in code”. We therefore focused on ensuring that

the students discovered that a computer scientist does a lot more than merely write code. This

hypothesis was based on, among other things, the way in which society in general uses the terms

programming and coding. We see a tendency to equate programming with coding; however, in our

understanding, programming involves all the stages of system development, including the design of the

system, and not just the specific action of entering codes. When students do not fully understand what

programming entails, they risk neglecting the design aspect and instead only focus on learning how to

code correctly.

Methodological approach

The project was designed as a design experiment, inspired by design-based research. The purpose of

design-based research is, among other things, to explore complex teaching practices in a way that is

valuable for others. That is, in a way where the construction of the experiment can be transferred from

one specific context to another. It is a formative, process-oriented assessment method, through which a

phenomenon is investigated to understand both its intended and unintended consequences. Thus,

design-based research is often conducted as iterations in the form of repeated, improved interventions

that lead to the generation of new theories (Barab & Squire, 2004). In our experiment, we tested the

theories presented above, and analyzed and discussed improvements of our design based on the

experiences we realized. This enabled us to contribute to the generation of subject-specific didactic

theory in this new area. Even though the experiment was conducted without iterations, our descriptions

and discussions can pave the way for others to complete and further develop our course.

Didactic standpoint and Bildung2 perspective

Our experiment is based on the German Bildung theorist Wolfgang Klafki’s critical-constructive

understanding of how the individual’s Bildung is also a societal issue. This means, among other things,

2 A holistic and humanistic approach to public education and its content that encompasses the individual, social

and cultural development of the whole child,, e.g. students developing into active citizens with social

Caeli & Dybdal 6

that, “Bildung theory and Bildung practice have the opportunity to, and are tasked with, not only

responding to conditions and developments in society, but also with assessing and helping shape these

based on an educational responsibility for current and future living and development opportunities...”

(Klafki, 2001, our translation). Thus he breaks with the classic approach of having a basic core consisting

of a fixed set of cultural elements. Instead, Klafki presents a new core based on a critical historical-

societal-political and, also, educational awareness, in which teaching focuses on “key problems of

contemporary life and the presumed future that are typical of the period”.

In our experiment, we used the environment as an example of a dominant problem characteristic of our

time. We especially focused on the part Klafki describes as:

developing the insights required to develop resource-saving and energy-saving technology

as well as environmentally friendly products and forms of production, just as we must limit

our consumption and make it environmentally friendly.

Klafki also stresses that general didactics cannot disregard the dimensions of area and subject-specific

didactic concretisation:

Only by drawing on area- and subject-specific didactic discoveries is it possible to find

answers to general didactic questions. (Klafki, 2001, our translation)

In our experiment, we primarily focused on technology comprehension as a subject, and this is also the

focus of this article, which is why science as a subject is not dealt with as such here. We drew on the

specific expertise of teacher specialists and content specialists within computer science, and this enabled

us to combine subject-specific knowledge with general didactic knowledge to create a subject-specific

didactic approach3.

Design and implementation of the experiment

The experiment was run over three full school days in an 8th grade (14-15 year-olds) in March 2019. The

school was located in the western part of the Greater Copenhagen Area. There were 20 students in the

class, 10 boys and 10 girls, of whom 95 per cent had a different ethnic background than Danish (19

students), and 80 per cent were multilingual (16 students).

Prior to the lessons, we prepared an overall lesson plan (see Appendix 1), as well as slides for the lessons

and worksheets4, and we made sure we had all the materials and resources we needed for the actual

lessons5. The lesson plan presented in this article has been modified to allow the reader to gain insights

competences and the ability to understand and take part in the democratic processes as well as their individual

overall development as human beings (Caeli & Bundsgaard 2019).
3 Elisa Nadire Caeli is originally educated as a teacher, has a master’s degree in learning and innovative change,

and is now a PhD student doing research on the development of computational thinking and technology

comprehension in K-9 schools. Martin Dybdal has a master’s degree in science and a PhD in computer science,

and is now a special consultant. He conducts research into, and works with, computer science didactics and

communication from basic education level to university level.
4 Slides and worksheets (in Danish) can be viewed and downloaded at

https://silo1.sciencedata.dk/shared/designeksperiment.
5 See the section “The experiment in practice” for more information about materials and resources.

https://silo1.sciencedata.dk/shared/designeksperiment

Caeli & Dybdal 7

into what actually took place in the classroom and use these insights in their own teaching. Time

intervals are indicative.

We designed and conducted the experiment together, but we took on different roles when conducting

the experiment. Martin Dybdal was responsible for teaching, while Elisa Nadire Caeli observed the

teaching, wrote field notes and had conversations with the students. Even though Elisa Nadire Caeli did

no teaching, throughout the experiment she acted as an observer and discussed didactic and pedagogical

initiatives and changes with Martin Dybdal. In addition to Elisa Nadire Caeli and Martin Dybdal, Maja

Hvidtfeldt Håkansson, who is a computer science student and a trained architect, participated as an

assistant teacher, as we considered it necessary with two teachers for this kind of project-oriented

teaching in a new subject area.

Data collection and analysis

The experiment was designed by the two authors as a collaborative effort: one author served as a content

specialist and the other as a teacher specialist. The experiment was based on the academic and subject-

specific didactic theories described above. This resulted in a lesson plan in which the students were to

develop a computational design based on a central contemporary problem within science. Data were

collected by testing the experiment in practice: we observed and video-recorded the teaching and wrote

field notes. We extracted a number of quotations from the teachers and students and we have analyzed

these quotations in the final part of this article. We specifically focused on our assessment with the

students. This assessment was partially unstructured, as we wanted the conversation to flow freely; we

wanted to hear the students’ immediate feedback. The empirical material on which this article is based

is thus qualitative in that we analyze and discuss the process on the basis of quotations from the students

and our own assessment.

We will present and discuss the experiment and the assessment in more detail in the following. We share

our lesson plans and slides, and describe the experiment in detail so that others can test and further

develop the course or draw on it for inspiration.

The experiment in practice
The experiment was in its form partially closed. The purpose was to model problem-solving through

computational design as a first step in the development towards becoming more independent

computational designers. As mentioned above, we hypothesized that the students were not used to

working in this way. This also meant that we had already selected the problem the students were to work

with as well as parts of their solution: They were to develop a prototype (a physical and programmed

design) that used LED strips. The purpose of the prototype was to help humans reduce their CO2

emissions by reducing their electricity consumption. The students were to retrieve data about Danish

real-time CO2 emissions from the data provider electricitymap.org, and then program the LEDs to

“report” (i.e. light up following a certain pattern) when CO2 emissions in Denmark are low and high,

respectively. Thus their design would show when electricity consumption is emitting the least CO2 (for

example because wind energy is being used), and therefore when electricity consumption is least

harmful to the environment. The LEDs were to be integrated into a physical prototype. The students

were to come up with their own ideas for their physical design, including where to place it, and whether

it should be integrated into an existing product or a new product. They were also to come up with ideas

for how the LEDs were to show whether it was a good idea to use electricity or not and then program

this. If, for example, consumers can see that CO2 emissions are high at a given time of day, they may be

encouraged to delay turning on their dishwasher or charging their mobile phone until emissions are

lower, because this would entail that the energy being used is greener.

Caeli & Dybdal 8

Our general didactic approach was based on the environmental issue as a typical contemporary key

problem, with a view to providing students with an insight into the need to develop resource-efficient

and energy-saving technologies, as well as environmentally friendly products. We used the subject areas

computer science and design as cross-disciplinary auxiliary subjects in our subject-specific didactic

approach. To create an overview and clarify what could be a chaotic and unpredictable design process,

we used a design model (Figure 3) to illustrate and talk to the students about where we were going,

where in the process we were, and what the next step would be6.

In the following, we describe what we did on each of the three days by drawing on specific examples. We

have chosen to focus primarily on the subject-specific content and the subject-specific didactic choices

of the teaching. In other words, we do not delve deeper into contextual and cultural factors, for example,

students who walked in and out of the classroom, or students who were noisy, used mobile phones or

ate snacks during the lessons. Even though these factors are important and should be considered when

a teacher is teaching a group of students that they know well, thereby allowing the teacher to address

the culture in the class, they are not the main focus of this article – both because they fall outside the

scope, and because they are insignificant in relation to the general statements of this article. Having said

that, we will briefly discuss some of these challenges in our analysis of the experiment at the end of the

article.

Day 1: Understanding the problem, understanding data and

defining the project

As can be seen in our teaching slides7, we started the experiment by introducing Naur’s model of the

relationship between people, problems and tools (Figure 1). Using this model, we explained to the

students that they were to design solutions for people for a current problem in the world, and that they

needed some tools to solve the problem. This led us to the design model (Figure 3), which we introduced

as the next step to help the students grasp what was going to happen over the course of the next three

days, including what our starting point was and where we planned to end. The model was inspired by

“Værktøjskassen” (“The Toolbox”) (Katapult/TEACH, 2013) and a design model from the School of

Design, Stanford University8, but it was adapted to the specific climate issue the students were to work

with.

6 This approach is inspired by John Hattie and Helen Timperley’s model for feedback, which, among other

things, aims to involve the students in their learning by making the process visible (Hattie & Timperley, 2013).
7 See the teaching slides for more about the specific activities, questions, models:

https://silo1.sciencedata.dk/shared/designeksperiment.
8 https://dschool.stanford.edu/

https://silo1.sciencedata.dk/shared/designeksperiment
https://dschool.stanford.edu/

Caeli & Dybdal 9

Figure 3. Our design model with the experiment’s specific content area: “the climate problem and energy consumption”.

The first phase of the model was about understanding the climate issue and energy consumption.

Because we did not know the students before we started, we did not know how much the students already

knew about the subject. However, the day before the experiment started, we learned that the students

had just begun working on a science project about sustainable energy supply; naturally this was helpful

to the experiment.

We started day 1 with an open dialogue about climate change, after which we showed the students a

short video about the greenhouse effect and the causes and consequences of climate change. Then we

discussed what we can do to counteract climate change; we talked about power consumption and power

production; and we introduced the students to electricitymap.org. For example, we talked about why

France was much “greener” than Estonia, and why Bornholm was greener than, for example, another

Danish island: Zealand. We linked this conversation to the scope of our problem-solving project:

reducing CO2 emissions through the use of data from electricitymap.org. The students were to use

electricitymap.org in their own computational design that was to include programming LEDs.

Again, we used Naur’s model (Figure 1) to illustrate why a number of well-known tools that were

designed to solve a problem for people are designed as they are. For example, why is a doorbell designed

to ring and not flash a light when someone is at the door? Why is a traffic light red, yellow and green?

And so on.

Then, we introduced the students to how the LEDs work and how to program them. We used our own

computers as they were equipped with the software we wanted to use. Before the lessons, we checked

that everything worked. We also brought our own ESP32 microcontrollers, LED strips and a 4G Wi-Fi

hotspot to minimize the risk of technical or infrastructural problems from systems in place at the school

that we were unfamiliar with.

Throughout the experiment, the students worked in pairs and shared a computer. As mentioned above,

the experiment was partially closed in the sense that we modelled large parts of the course for the

students in a way that provided them with an understanding of how computational designers work.

That is, it was not our intention for the students to become programmers over the course of the three

days – that would also have been quite unrealistic. The intention was for them to experience how

programming can be used as a tool to solve a real problem in the world. Therefore we provided them

Caeli & Dybdal 10

with worksheets with a substantial amount of the code they needed. For example, for worksheet #1, the

students were to start by opening the program Mu9 and entering the code as described below (Figure 4).

Figure 4. Example of code from worksheet.

Then they were to test whether the code worked as intended: The first diode [0] should light up in red,

and the tenth [9] should light up in blue.

Next, the students were to add more features to the program. The goal was for the diodes to alternate

between red and blue. Finally they experimented with the colors using color codes from the worksheet.

This quickly led to a number of questions, such as why only two lamps lit up, and how they could make

them all light up. In other words, the students were motivated by the fact that they could influence how

their LEDs lit up.

After this first trial run, we wanted the students to learn how to work together when programming by

using the method of pair programming10 as research has shown that working together in pairs, results

in much better programs. We introduced the following rules for pair programming:

9 A simple Python code editor for beginner programmers: https://codewith.mu/
10 See Tabel et al., 2017 for more about pair programming in a teaching context.

https://codewith.mu/

Caeli & Dybdal 11

 One person is the driver, the other person is the navigator.

 The driver keeps their hands on the steering wheel (keyboard) and eyes on the road

(screen).

 The navigator holds the “map” and focuses on the destination and how to get there.

 The navigator must not touch the keyboard or the mouse, and the driver must not ignore

the navigator.

 No one is allowed to issue orders.

 Both parties must talk nicely to one another.

 Both parties must try to keep a conversation going and constantly verbalize what they are

doing, so as to verbalize what they are learning.

We told the students that one of the objectives was that they acquire a vocabulary for programming and

thereby become better at talking about the programs.

After the students had experimented with colors and more attractive codes, they used the next worksheet

(#2) to learn how to connect their microcontroller to the Wi-Fi and retrieve CO2 data from

electricitymap.org. They used the data in their design to make the LEDs visualize CO2 emissions in

Denmark in real time. In the beginning they were motivated by the LEDs lighting up, but they gradually

lost their focus and motivation to program. We explained to them that day 2 would be a bit more creative

in that they were to draw and build a prototype using cardboard. However, for the LEDs to show the

CO2 emissions, they first had to learn how to use the data they had retrieved from electricitymap.org.

We worked on this for the rest of the day.

Day 2: Ideas for designing and constructing a prototype

Day 2 started with a recap of day 1, which served as a formative assessment for us in relation to the

students’ level of understanding, and as a reminder to the students about where in the process we were.

Recurring statuses and conversations about what was happening enabled us to monitor their

understanding, which we considered important in a partially open problem-solving process such as our

experiment. There were no right or wrong answers.

After the recap, we moved on to the next phase: design ideas. Whereas focus on day 1 – in addition to

understanding the science problem – was on computational competencies, focus on day 2 centered

more on design competencies and on linking the two competencies.

We started with a brainstorm about what constitutes good and bad design, including what to consider

when interacting with users, and what the students themselves thought was important in a design. All

their ideas were written on the board. The students listed the following characteristics of good design:

appropriate size that fits the body, matches our habits, durable, new and creative, simple, helps people,

looks good, feels nice, works, solves the problem, good quality and easy to learn to use. And they

described the following characteristics of bad design: poor quality, difficult to understand, breaks easily,

too small or too big, difficult to use, does not solve the problem and is annoying. Then we watched a

short video in which a number of famous Danes talked about what they think good design is. We had

intentionally planned for the students to activate their pre-understanding themselves by sharing their

ideas before they were presented with arguments and ideas from other sources.

Next, we asked the students to rank their ideas about what characterizes good design according to their

opinions as to what was the most important. For example, we asked them, what is most important: that

a design looks good, or that it is a good fit to our body and habits? “That it looks good,” said one student.

“It's more important that it’s a good fit,” said another student, to which the first student responded,

Caeli & Dybdal 12

“Yes, I agree. I've changed my mind.” We had planned to have discussions like these, because we found

them to be useful for developing the students’ collaborative competencies and insight into the

perspectives of other users. In our view, and with reference to our design model, such competencies are

required of a competent computational designer.

Then we showed the students some prototypes, both to help make their pending task more concrete and

to serve as a starting point for a conversation about whether these prototypes were examples of good

designs based on the criteria the students had just discussed. This conversation led to discussions about

what might be less important in a prototype. For example, we discussed that maybe the students’ criteria

“good quality” and “looks good” might not be as important in a prototype.

After this, the students got started on planning their design. First, they discussed what their design

needed to be able to do, and where it was to be placed, and then they sketched on paper what it should

look like. The next phase was Build prototype for design. Prior to the experiment we had asked the

students to collect and bring some material they could use to build their prototypes, for example

cardboard and polystyrene and we brought some materials too. We also made sure scissors, hobby

knives, pens and glue guns were available. Because it was such a central part of the design, the

electronics had to be incorporated into this process. This resulted in the students alternating between

building with cardboard, putting the LED strip in place and programming the “actions” of the LEDs.

Figure 5 provides a sense of the process with examples of sketches on paper, prototypes and code.

Caeli & Dybdal 13

Figure 5. Examples of the groups’ paper sketches, codes and prototypes.

Day 3: Testing, user feedback, new prototype and presentation

After a recap from day 2, we presented the next phase: user testing. This was planned as peer feedback.

Two groups demonstrated to each other how they had built their design, explained what a finished

version would look like and shared their challenges and what they would like some help with. As

feedback criteria, we used the students’ own ideas from day 2 of what constitutes good design. We did

this to emphasize the fact that the users of a design – people – ultimately decide whether your design is

successful.

In our experiment, we wanted the students to get a taste of what it means to interact with users. Our

intention was that the students experience that, even though they themselves thought that their design

was finished, there might still be things that could be improved after they had received feedback from

others. Therefore, we told them that, based on the feedback they received, they were to change at least

one thing in either their code or physical design. Next they were to prepare a presentation for later that

day. The presentation could be no longer than six minutes and had to be based on certain criteria (see

lesson slides).

Caeli & Dybdal 14

Before the students gave their presentation, we returned to the programming part. This was a slight

deviation from the original plan, in which we had set aside more time for the physical design, user

feedback and preparation of the presentation. As it turned out, we had more time than anticipated, and

we assessed that the students would benefit from a more detailed conversation about what each part of

their program did. We asked the groups to take turns at presenting their code to one another while we

asked questions. We also discussed in plenary session how to improve the codes, for example, by using

more efficient methods.

In the final part of the experiment, the students were to present their design to another class from the

same year and two of their teachers. In their presentations they talked about the parts they had struggled

with, but that they had found a solution to through testing and feedback. For example, one group

described how they had learned that yellow and white light were difficult to distinguish from one

another, so they chose to use a different color instead. The same group explained that at first they had

struggled with their physical prototype because it was very unstable, so they changed the design based

on the feedback they had received. The students also commented on the materials they had used: “It

should really be made of metal and not cardboard and duct tape and plastic cups.” The students’

presentations were the final part of the experiment, and after the final presentation we assessed the

entire process with the students.

Results: opportunities and challenges
In this section, we discuss the subject-specific didactic opportunities and challenges seen from our

perspective – but also from the perspectives of the students. We had prepared to number of questions11

with which to assess the experiment thoroughly with the students12, as we considered it a significant part

of a qualitative design experiment like this – and of teaching in general – to discuss developments with

the people involved.

We analyzed our results based on our two primary hypotheses: that we would encounter some resistance

from the students with regard to changing their designs to accommodate user feedback, and that they

would equate computer science with programming. However, we also identified other opportunities and

challenges, including changed perceptions of and new opportunities for good experiences with computer

science, good experiences with creative breaks and varied ways of working, the positive impact of

authenticity with regard to the students’ understanding, and the wish for a greater degree of freedom

than they were granted in this project.

Resistance to change

After the first iteration of the design process, in which the groups had given each other feedback, we

gave the students the extra challenge to make at least one change to their design. The groups responded

differently to this challenge. Whereas some students immediately set about stabilizing their design or

changed their programming, other groups believed, as expected, that their product was finished and

therefore they did not think it was necessary to incorporate the feedback they had received. This became

evident when some of the students just left the classroom because they believed they were finished.

11 See lesson slides, slide no. 63.
12 The wording of some of the quotes has been slightly edited for the sake of readability, but without changing

the meaning of the students’ comments.

Caeli & Dybdal 15

This resistance to making certain changes was also seen later; for example, when giving their

presentation, a group showed signs of not having understood what their LED strip actually showed. The

same group had been given extra help with the design and programming of their LEDs, but they had

been more interested in getting the LEDs to light up in a specific way, that they thought looked nice,

rather than making the LEDs represent information about CO2 emissions. For example, the group asked

for help to make the LEDs light up in green several times, even though we told them that the lamps

would only light up in green when CO2 emissions in Denmark were low. They simply wanted the LED

lamps to always light up following a specific color pattern, regardless of the changes in the CO2 emission

data.

That is, they demonstrated both resistance to making changes and a desire to place priority on the

attractiveness of their product rather than on it actually responding correctly to the data.

What students think about computer science

Our oral assessment with the students showed that, after the course, they still had a narrow

understanding of what a programmer does when we asked them about this specific term. For example,

one student replied that a programmer is a person who: “writes a whole lot of code and tests it and sees

and something like that ... and doesn’t really do much else at work than write code,” and another student

replied that a programmer is: “someone who knows a lot about different mechanisms for a computer,

because I think they work a lot at a computer.” This understanding was broader when we discussed the

term further and asked what a computer scientist and a designer do.

One student explained that a designer: “asks himself questions: ‘Is this good enough? Does it have all

these requirements?’ (..) And if it doesn’t, he’ll start all over again. (...) You keep trying.” Another student

asked: “Weren’t there three, he builds... he designs a prototype (...) and then he moves on to design,

prototype, design, prototype, test... and then he goes back?” When commenting on the work a computer

scientist does, the students said that a computer scientist is: “a very clever and patient person.” Another

student added: “a very precise person, because you have to be very precise when you write those codes",

to which a third student replied: “Yes, precise and patient (...) and someone who can cope with many

things.” A fourth student pointed out that a computer scientist is: “someone who can think very broadly

(...)”, and a fifth pointed out that it is: “someone who has a good overview. Because he must always be

able to see if there’s an error somewhere.” About errors, another student said: “I accidently typed a letter

in small caps when it should have been large caps. And that’s something you don’t notice so easily.”

Based on these comments, we conclude that a few of the students have experienced that a computer

scientist must be able to think broadly, whereas some of the other students still have the very narrow

understanding of what a computer scientist does that we were concerned about. The students’ answers

may reflect the way in which we asked the question – as two separate areas of work – but we still believe

that it is possible to conclude that a course as short as ours is not enough to give the students an

understanding of the fact that computer scientists do not merely write code. That they also sometimes

work with design, for example.

Changed perceptions and new opportunities for success

Even though the students still did not fully understand the complexity of computer science at the end of

the experiment, we did observe other changes in their perceptions. For example, some of the students

had expected the assignment to be much more difficult: “When you first explained what we were to do,

I thought: ‘Okay, I don’t think this will go so well,’ but then when I got started and actually sat quietly

and worked, and it was explained properly, then I thought it was fun.” Another student said: “I think it

was much easier than I had expected. I’ve sat there and seen the big companies that just write 100 codes

in ten minutes and thought: ‘If that’s what we have to do... I give up’.”

Caeli & Dybdal 16

And another student, who said he is planning a career in IT, commented: “I thought this really was a lot

of fun. Of course, there was also some new stuff, and it’s something I’m interested in, so (...) and I’m

going to use it later when I work in IT too. I was also quite surprised, because I’d expected it to be really,

really difficult and take a really, really long time, but it was quite fast, and it’s much easier than I’d

thought it would be.”

Several of the students used male pronouns when referring to both a designer and a computer scientist.

When we were talking about what a computer scientist does, we asked about this and discussed whether

it was always a “he”. One of the students replied: “Or she. It’s just a person.” We asked if they thought

that being a computer scientist is a profession for men, to which the student answered yes. Another

student replied: “I think it’s something that everyone, both men and women, can do, because my mother

has also worked with it,” and a third replied: “Everybody can do it. Equality.” A fourth student said:

“We’ve all done it in here”, while a fifth explained how his perspective had changed, because in the

beginning he had thought that only men could be computer scientists. But now: “For example, we’ve

met Maja, (...) and she also works with stuff like that. So I guess that means there are just as many

women as there are men.” These statements emphasize how important it is that we talk about and make

visible the fact that computer science is not a gender-specific discipline.

One of the students also expressed surprise at what they were capable of: “I’m surprised at how good

Kasper and I are at designing. (...) I’ve always been bad at building things, and now I’ve built this. I’m

happy.” The student’s experience does not just reflect a changed perception, it also shows that the design

element can provide new opportunities for success. That the link between developing competencies in

computational thinking and design thinking can potentially give students new opportunities for

experiencing success.

Creative breaks and varied ways of working

By coupling computational thinking and design thinking, we can also provide students with more varied

teaching activities that alternate between different domains; this helps prevent lessons from becoming

monotonous. Among other things, this was seen in the way some students became invigorated when

they were presented with a creative task. One of the students said: “I thought it was a bit boring (...), and

I didn’t respond very well to it, but I really liked it when we were creative and when we had to build that

thing. That was kind of fun.”

Another student felt differently: “I think it’s been really fun (...) I’ve learned a lot, and I didn’t think any

of it was boring, but I think the most fun part was when we built stuff and had to share our ideas.”

Working together in pairs when programming also motivated the students because they got to alternate

their roles. One of the students said: “The most fun bit was the navigator and driver thing. (...) I thought

that was a lot of fun, because we had to try and rephrase things so the other person understood it.”

We had designed worksheet #1, which showed how to program LED strips, so that the students began

by working with LED strips without using loops. Loops had the advantage of shortening the code so the

students would not have to write the same code over and over again. We wanted to ensure that the

students did not have to learn too many concepts at once, and to ensure that loops were introduced at a

point when the students could see that using loops would make their task easier. We did this based on

the expectation that if the students had learned about loops at the beginning – without having

experienced what it was like not to use loops – they would not realize how useful they are.

When we asked the students about this part of the lesson, they had different responses. One student

said: “I thought it was boring, but some of it was fun too. For example, I didn’t know you could do this

programming (...) with LED lights.”’ We asked what had been boring, and the student explained: “That

you had to sit and write it [lines of code that were to be repeated], even though there was a faster way.”

Caeli & Dybdal 17

We talked about how we had designed the task to be boring in the beginning with repetition of lines of

code, so the students would discover later on that there was a smarter way.

This was a first experiment. Based on the students’ assessment and our own assessment, we find that

the lessons were successful; however, some changes in culture are needed, as is more experience with

the methods used if the students are to become independent, reflective and innovative computational

designers.

Conclusion and perspectives
The purpose of this experiment was to examine a way of teaching computational thinking and design

thinking in Danish K-9 schools by developing a computational design for solving an authentic problem,

and through this to identify the subject-specific didactic possibilities and challenges of this kind of

teaching. We designed the teaching as a design experiment based on a problem within science for which

the students were to develop a digital design that could help people reduce CO2 emissions caused by

their electricity consumption.

In the experiment, we used two models in particular that we applied didactically both before and during

the experiment. We used Naur’s model (Figure 1) of the relationship between problems, tools and people

to clarify the goal of developing a solution to a problem in the world for people by using tools. In this

respect, it is important to emphasize that, in the real world, being able to program a perfect LED is

worthless if no one realizes the applicability of your design. For example, as one group discovered, if

human users cannot distinguish between the different colors of the LEDs, it makes no difference that

the LEDs were actually programmed correctly. There must be a conscious relationship between the

problem, people and tools, and we must bear all three elements in mind when working with the area at

schools. We used the design-thinking model (Figure 3) when planning the different stages of the

experiment and as a guiding principle throughout to help us maintain focus on where we were, what we

had done and what the next step would be. Thus, we combined computational thinking and design

thinking with the concept Denning has termed computational design (Figure 2).

Our analysis was based on our two primary hypotheses: that we would encounter some resistance from

the students with regard to changing their designs to accommodate user feedback, and that they would

equate computer science with programming. These hypotheses were partially confirmed. However, with

regard to the students’ resistance to making changes, the fact that we had chosen a controlled teaching

format meant that students who resisted were ‘forced’ to change at least one thing in their design. In the

long term, the intention is for the students to be able to see the possibilities that lie in user feedback and

in making adjustments. With regard to what the students thought computer science entails, at the end

of our course, a few students understood that computer scientists must be able to think broadly, whereas

others had a narrow understanding of a computer scientist as someone who (only) writes codes.

In our analysis of the experiment, we also identified other opportunities and challenges, including

changed perceptions of and new opportunities for positive experiences with computer science; positive

experiences with creative breaks and varied ways of working; the positive impact of authenticity with

regard to the students’ understanding; and the desire for a greater degree of freedom. The latter arose

from the fact that we had chosen the problem the students were to work with to model how a

computational designer works. Focused efforts on changing cultural aspects and strengthening project-

oriented working methods can over time lead to students being given a greater degree of freedom. Giving

students freer rein in their work would, however, require a high degree of independence and changes in

culture, and we would need more time to work with these aspects in the classroom.

In this regard, the context and culture of a school affect the ways in which the students are used to

working. It was a challenge that we did not know the students in advance, just as we were not familiar

with the conventions, cultural codes and ways of working usually at play in the class. Major cultural

Caeli & Dybdal 18

changes do not happen overnight – they require time and repetition – and it would be unrealistic for us

to constantly ‘discipline’ the students or expect that they change their habits over the course of a three-

day experiment. Therefore, we made a conscious choice not to focus on changing the culture in the

classroom, but instead focus on the subject-specific content. This meant that, to the extent possible, we

followed the conventions of the class and let their regular teachers, who were present for most of our

lessons, keep track of, for example, the attendance register, any internal social problems, and any

students who left the classroom in the middle of a lesson. For example, some students were more present

both physically and mentally in class than others, and we experienced a number of social and academic

challenges that we were not able to work with in the short period of time that we were there.

In addition to contributing to the didactics of technology comprehension, the aim of this experiment is

also to inspire further subject-specific didactic research within the field of teaching computer science

(in Denmark, known as technology comprehension13) in K-9 schools. By making our lesson plans, slides

and worksheets freely available, we hope that others want to test or further develop our theory and

practice.

References
Barab, S. & Squire, K. (2004). Design-Based Research: Putting a Stake in the Ground. The Journal of the

Learning Sciences, 13(1): 1-14. https://doi.org/10.1207/s15327809jls1301_1

Caeli, E. N. (2021). Computational Thinking in Compulsory Education: What, Why, and How? A Societal and

Democratic Perspective. PhD Dissertation. ARTS, Aarhus University.

Caeli, E. N. & Bundsgaard, J. (2020). Teknologikritik i skolen – et demokratisk perspektiv på teknologiforståelse.

In: Haas, C. og Matthiesen, C. (Eds.). Fagdidaktik og demokrati. Samfundslitteratur.

Cross, N. (2011). Design Thinking: Understanding how designers think and work. Bloomsbury.

Denning, P. J. (2017). Computational Design. ACM Ubiquity. Volume 2017, August: 1-9.

https://dl.acm.org/doi/10.1145/3132087

EMU (2019). Formålet for forsøgsfaget teknologiforståelse. https://www.emu.dk/grundskole/forsogsfag-

teknologiforstaelse/formal. Undervisningsministeriet.

Hattie, J. & Timperley, H. (2007). The Power of Feedback. Review of Educational Research, 77(1).

https://doi.org/10.3102/003465430298487

Naur, P. (1965). The Place of Programming in a World of Problems, Tools, and People. Proc. IFIP Congress 65:

165-199.

Naur, P. (1970). Planer og ideer for datalogisk institut ved Københavns Universitet. Studentlitteratur.

Katapult/TEACH (2013). Værktøjskassen: Model for designtænkning. The project Next Generation. University of

Copenhagen. https://innovation.sites.ku.dk/model/design-thinking/

Klafki, W. (2001). Dannelsesteori og didaktik – nye studier. Klim.

Smith, R. C.; Iversen, O. S.; & Veerasawmy, R. (2016). Impediments for Digital Fabrication in Education: A study

of teachers’ role in digital fabrication. International Journal of Digital Literacy and Digital Competence, Vol.

7(4). https://doi.org/10.4018/IJDLDC.2016010103

Tabel, O.; Jensen, J.; Dybdal, M.; & Bjørn, P. (2017). Coding as a social and tangible activity. Interactions, 24(6):

70-73. https://doi.org/10.1145/3137099

13 Even though our teaching design is not based on the curriculum for the experimental subject technology

comprehension, there is considerable overlap between our design and several of the areas of competence

included in the curriculum, and it fits in with the broad Bildung perspective that we see in the curriculum, as

well as with the traditions and overall objective of Danish schools.

https://doi.org/10.1207/s15327809jls1301_1
https://dl.acm.org/doi/10.1145/3132087
https://www.emu.dk/grundskole/forsogsfag-teknologiforstaelse/formal
https://www.emu.dk/grundskole/forsogsfag-teknologiforstaelse/formal
https://doi.org/10.3102/003465430298487
https://innovation.sites.ku.dk/model/design-thinking/
https://doi.org/10.4018/IJDLDC.2016010103
https://doi.org/10.1145/3137099

Caeli & Dybdal 19

Appendix 1. Lesson plan
This appendix provides an overview of our lesson plan. The slides and worksheets (in Danish) are freely

available and can be downloaded at: https://silo1.sciencedata.dk/shared/designeksperiment

Day 1

Objective Introduce to the course

and academic content

Develop an understanding

of the problem

Develop an understanding

of data – specifically from

electricitymap.org

Practical preparations

Develop programming

competencies

Contents 8.00-9.50 10.10-12.00 12.30-14.00 / 14.15-

15.00

20 min.: Introduce

ourselves, the experiment

and the overall plan –

show design model

Understand the

problem

20 min.: Multivoiced

dialogue: Introduce the

problem/activate pre-

understanding of the

climate issue

Video

20 min.: Discuss what

we can do about climate

change

Understanding

data/delimitation

20 min.: Energy

consumption versus

production in Denmark

15 min.: Set up

computer, log on, connect

to Wi-Fi

15 min.: Explore

electricitymap.org

10 min.: Sum up and set

the stage for the solution

we will be working with

Ideas

15 min.: Design adapted

to the problem

Why wouldn’t an app

work?

Compare with other data

indicators found in the

home

Prototype

10 min.: Introduction to

programming in pairs

Advantages/disadvantage

s?

10 min.: Introduction to

microcontrollers, LED

strips and the Mu editor

90 minutes: Worksheet

#1

Programming in pairs in

practice – time it so they

swap roles

Mu editor, connecting the

microcontroller, connect

the LED strip, change

colors, make a pattern

Introduction to variables

Change their code to use

variables

Prototype

2 hours and 15 min.:

Worksheet #2

Introduction to logging on

to the Wi-Fi and retrieving

data from ElectricityMap

Add code to retrieve CO2

contamination level from

ElectricityMap

Introduction to if

sentences

Change the code to change

colors based on CO2 level

Materials Computer, access to

electricitymap.org, 4G Wi-

Fi-hotspot

Computer,

microcontroller, LED

strip, 4G Wi-Fi-hotspot,

worksheet

Computer,

microcontroller, LED

strip, 4G Wi-Fi-hotspot,

worksheet

https://silo1.sciencedata.dk/shared/designeksperiment

Caeli & Dybdal 20

Day 2

Objective Develop design

competencies

Develop programming

competencies

Develop design

competencies

Contents 8.00-9.50 10.10-12.00 12.30-14.00

10 min.: Return to the

problem: Where are we in

the design process?

5 min.: Introduce to part

about design

Ideas

20 min.: Multi-voiced

dialogue about design:

What is a good/bad

design? What should you

think about when

interacting with users?

What is important in a

design? Write points

made on the board

25 min.: Inspiration

from users. What do other

people think is good

design? Video

20 min.: Introduce

prototype: Sketch on

paper before they build it.

Build using cardboard,

glue, etc. Consider the

final version (colors,

materials, etc.)

30 min.: Generate ideas

and start building a

prototype

Ideas and Prototype

Own pace

Continued idea

development and

construction of prototype

Ask them to proceed with

worksheets #3, #4 and #5

Individual supervision,

depending on level and

speed

Prototype

2 hours: Completion of

prototype

15 min.: Testing own

prototype

Materials Computer,

microcontroller, LED

strip, 4G Wi-Fi-hotspot

Building materials for

prototypes (cardboard,

glue guns, flamingo,

markers, tape, staples,

scissors), computer,

microcontroller, LED

strip, 4G Wi-Fi-hotspot

Building materials for

prototypes (cardboard,

glue guns, flamingo,

markers, tape, staples,

scissors), computer,

microcontroller, LED

strip, 4G Wi-Fi-hotspot

Caeli & Dybdal 21

Day 3

Objective Develop design

competencies

Develop feedback

competencies

Develop design

competencies

Develop feedback

competencies

Develop communication

skills

Assessment

Contents 8.00-9.50 10.10-12.00 12.30-14.00

10 min.: Sum up days 1

and 2 using the design

model

Testing

15 min.: Introduction to

feedback: work in pairs.

Explain the design,

functions and challenges

to each other

20 min.: Test each

other’s prototype + give

feedback based on the

criteria for a good design

from day 2

Prototype

30 min.: Revision of

design/prototype before

presentation: change at

least one thing in either

the code or design

Testing

90 minutes: The groups

present and explain their

codes in plenary session

10 min.: Introduction to

presentation, including

scope of content and time

per group

40 min.: Prepare and

practice presentation

Testing

90 minutes:

Presentation of prototypes

for each other, another

class from the same grade

and teachers

45 min.: Multi-voiced

assessment of the project,

e.g.: What have they

learned that they didn’t

know before? What

worked well? What didn’t

work so well? What have

they learned about data?

What have they learned

about design? What have

they learned about

programming? What

surprised them?

Materials Computer,

microcontroller, LED

strip, 4G Wi-Fi-hotspot

Computer,

microcontroller, LED

strip, 4G Wi-Fi-hotspot

Computer,

microcontroller, LED

strip, 4G Wi-Fi-hotspot

Caeli & Dybdal 22

Authors

Elisa Nadire Caeli

PhD student

Danish School of Education (DPU), Aarhus University and Department of

Teacher Education, University College Copenhagen

Conducts research into students’ development of computational thinking

and technology comprehension in K-9 education

Martin Dybdal

PhD, special consultant

Department of Computer Science, University of Copenhagen

Conducts research into and works with computer science didactics and

communication from K-9 education to university level

	Unplugged Approaches to Computational Thinking: a Historical Perspective
	Abstract
	Historical discussions on computers in education
	Understanding and Design of Algorithms
	A Constructionist Approach to Learning to Think Computationally
	Unplugged Approaches to Computer Science
	Understanding Fundamental Principles
	Thinking and Designing before Writing the Code
	Examples of Unplugged Approaches
	Combining Unplugged and Plugged Approaches

	Conclusion
	References

	Computational thinking in compulsory education: a survey study on initiatives and conceptions
	Abstract
	Introduction
	Historical perspectives regarding computer science education
	Computational thinking and curriculum design in Denmark
	Purpose of this study
	Danish primarylower-secondary school and school administration

	Method
	Research design
	Research questions
	Data collection and participants

	Data analysis and results
	Technology initiatives in schools
	Analysis and conclusions regarding technology initiatives in schools
	Teachers’ professional development (PD)
	Analysis and conclusions regarding teachers’ skills
	Conceptions of computational thinking
	Familiarity
	Definition
	Importance
	Relevance
	Challenges
	Advantages
	Analysis and conclusions regarding conceptions of computational thinking

	Discussion
	References

